A127876 Integers of the form (x^3)/6 + (x^2)/2 + x + 1.
1, 13, 61, 172, 373, 691, 1153, 1786, 2617, 3673, 4981, 6568, 8461, 10687, 13273, 16246, 19633, 23461, 27757, 32548, 37861, 43723, 50161, 57202, 64873, 73201, 82213, 91936, 102397, 113623, 125641, 138478, 152161, 166717, 182173, 198556, 215893, 234211
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
Filtered(List([0..150],x->(x^3)/6+(x^2)/2+x+1),IsInt); # Muniru A Asiru, Apr 30 2018
-
Magma
[(9*n^3-18*n^2+15*n-4)/2: n in [1..30]]; // G. C. Greubel, Apr 29 2018
-
Mathematica
a = {}; Do[If[IntegerQ[1 + x + x^2/2 + x^3/6], AppendTo[a, 1 + x + x^2/2 + x^3/6]], {x, 1, 300}]; a Select[Table[x^3/6 + x^2/2 + x + 1, {x, 0, 200}], IntegerQ] (* Harvey P. Dale, Jan 06 2011 *)
-
PARI
Vec(x*(1+2*x)*(1+7*x+x^2)/(1-x)^4 + O(x^50)) \\ Colin Barker, May 15 2016
Formula
From Colin Barker, May 15 2016: (Start)
a(n) = (9*n^3-18*n^2+15*n-4)/2.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4.
G.f.: x*(1+2*x)*(1+7*x+x^2) / (1-x)^4.
(End)
E.g.f.: 2 + (9*x^3 + 9*x^2 + 6*x - 4)*exp(x)/2. - G. C. Greubel, Apr 29 2018
Extensions
a(1) = 1 added by Harvey P. Dale, Jan 06 2011
Comments