A128174 Transform, (1,0,1,...) in every column.
1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 0, 1; 1, 0, 1; 0, 1, 0, 1; 1, 0, 1, 0, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Crossrefs
Cf. A004526 (row sums).
Programs
-
Haskell
a128174 n k = a128174_tabl !! (n-1) !! (k-1) a128174_row n = a128174_tabl !! (n-1) a128174_tabl = iterate (\xs@(x:_) -> (1 - x) : xs) [1] -- Reinhard Zumkeller, Aug 01 2014
-
Magma
[[(1+(-1)^(n-k))/2: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 05 2019
-
Maple
A128174 := proc(n,k) if k > n or k < 1 then 0; else modp(k+n+1,2) ; end if; end proc: # R. J. Mathar, Aug 06 2016
-
Mathematica
a128174[r_] := Table[If[EvenQ[n+k], 1, 0], {n, 1, r}, {k, 1, n}] TableForm[a128174[5]] (* triangle *) Flatten[a128174[10]] (* data *) (* Hartmut F. W. Hoft, Mar 15 2017 *) Table[(1+(-1)^(n-k))/2, {n,1,12}, {k,1,n}]//Flatten (* G. C. Greubel, Sep 26 2017 *)
-
PARI
for(n=1,12, for(k=1,n, print1((1+(-1)^(n-k))/2, ", "))) \\ G. C. Greubel, Sep 26 2017
-
Sage
[[(1+(-1)^(n-k))/2 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 05 2019
Formula
A lower triangular matrix transform, (1, 0, 1, ...) in every column; n terms of (1, 0, 1, ...) in odd rows; n terms of (0, 1, 0, ...) in even rows.
T(n,k) = [k<=n]*(1+(-1)^(n-k))/2. - Paul Barry, Sep 10 2008
With offset n=1, k=0: Sum_{k=0..n} {T(n,k)*x^k} = A000035(n), A004526(n+1), A000975(n), A033113(n), A033114(n), A033115(n), A033116(n), A033117(n), A033118(n), A033119(n), A056830(n+1) for x=0,1,2,3,4,5,6,7,8,9,10 respectively. - Philippe Deléham, Oct 17 2011
T(n+1,1) = 1 - T(n,1); T(n+1,k) = T(n,k-1), 1 < k <= n+1. - Reinhard Zumkeller, Aug 01 2014
Comments