A134511 abs(A049310) * A128174 provided both arrays are read with offset (n,k) = (0,0).
1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 5, 0, 4, 0, 1, 0, 8, 0, 5, 0, 1, 13, 0, 12, 0, 6, 0, 1, 0, 21, 0, 17, 0, 7, 0, 1, 34, 0, 33, 0, 23, 0, 8, 0, 1, 0, 55, 0, 50, 0, 30, 0, 9, 0, 1, 89, 0, 88, 0, 73, 0, 38, 0, 10, 0, 1, 0, 144, 0, 138, 0, 103, 0, 47, 0, 11, 0, 1, 233, 0, 232, 0, 211, 0, 141, 0, 57, 0, 12, 0, 1
Offset: 0
Examples
First few rows of the triangle T(n,k): 1; 0, 1; 2, 0, 1; 0, 3, 0, 1; 5, 0, 4, 0, 1; 0, 8, 0, 5, 0, 1; 13, 0, 12, 0, 6, 0, 1; 0, 21, 0, 17, 0, 7, 0, 1; 34, 0, 33, 0, 23, 0, 8, 0, 1; 0, 55, 0, 50, 0, 30, 0, 9, 0, 1; ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 141, flattened)
- H. Belbachir and A. Belkhir, Combinatorial Expressions Involving Fibonacci, Hyperfibonacci, and Incomplete Fibonacci Numbers, Journal of Integer Sequences, Vol. 17 (2014), Article 14.4.3.
- A. Dil and I. Mezo, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comp. 206 (2008), 942-951; in Eqs. (11), see the incomplete Fibonacci numbers.
- Piero Filipponi, Incomplete Fibonacci and Lucas numbers, P. Rend. Circ. Mat. Palermo (Serie II) 45(1) (1996), 37-56; see Table 1 (p. 39) that contains the incomplete Fibonacci numbers.
- A. Pintér and H.M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (Serie II) 48(3) (1999), 591-596.
Programs
-
Maple
N:= 20: # for the first N rows T128174:= Matrix(N,N,(i,j) -> `if`(j<=i, (i-j+1) mod 2, 0)): T049310:= Matrix(N,N): for i from 1 to N do P:= orthopoly[U](i-1,x/2); for j from 1 to i do T049310[i,j]:= abs(coeff(P,x,j-1)) od od: A:= T049310 . T128174: for i from 1 to N do convert(A[i,1..i],list) od; # Robert Israel, Mar 02 2018 # second Maple program: T:= (n, k)-> `if`((n+k)::odd, 0, add(binomial(n-s, s), s=0..(n-k)/2)): seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Sep 02 2019
-
Mathematica
T[n_, k_] := If[OddQ[n+k], 0, Sum[Binomial[n-s, s], {s, 0, (n-k)/2}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 31 2021, after Alois P. Heinz *)
Formula
abs(A049310) * A128174 as infinite lower triangular matrices assuming both of them have offset (n,k) = (0,0).
From Petros Hadjicostas, Sep 03 2019: (Start)
Let F(m,r) = Sum_{j = 0..r} binomial(m-1-j, j) be the incomplete Fibonacci numbers from the references (defined for m >= 1 and 0 <= r <= floor((m-1)/2)).
As Alois P. Heinz observed, for n >= 0 and 0 <= k <= n, T(n, n-k) = F(n+1, k/2) when k is even, and = 0 otherwise (see his Maple program below).
(End)
Extensions
Edited by Robert Israel, Mar 02 2018
Comments