cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128176 A128174 * A007318.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 4, 3, 1, 3, 6, 7, 4, 1, 3, 9, 13, 11, 5, 1, 4, 12, 22, 24, 16, 6, 1, 4, 16, 34, 46, 40, 22, 7, 1, 5, 20, 50, 80, 86, 62, 29, 8, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 17 2007

Keywords

Comments

Row Sums = A000975: (1, 2, 5, 10, 21, 42, 85, 170, ...).
From Peter Bala, Aug 14 2014: (Start)
Riordan array ( 1/((1 - x^2)*(1 - x)), x/(1 - x) ).
Let B_n be the set of length n nonzero binary words ending in an even number (possibly 0) of 0's. Then T(n,k) is the number of words in B_n having k 1's. An example is given below. (End)

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  2,  2,  1;
  2,  4,  3,  1;
  3,  6,  7,  4,  1;
  3,  9, 13, 11,  5,  1;
  4, 12, 22, 24, 16,  6,  1;
  4, 16, 34, 46, 40, 22,  7,  1;
  ...
From _Peter Bala_, Aug 14 2014: (Start)
Row 4: [2,4,3,1].
k      Binary words in B_4 with k 1's       Number
- - - - - - - - - - - - - - - - - - - - - - - - - -
1      0001, 0100                            2
2      0011, 0101, 1001, 1100                4
3      0111, 1011, 1101                      3
4      1111                                  1
- - - - - - - - - - - - - - - - - - - - - - - - - -
The infinitesimal generator matrix begins
   0
   1  0
   1  2  0
  -1  1  3  0
   1 -1  1  4  0
  -1  1 -1  1  5  0
  ...
Cf. A132440. (End)
		

Crossrefs

Cf. A035317 (mirror). [Johannes W. Meijer, Jul 20 2011]

Programs

  • Mathematica
    (* Dot product of two lower triangular matrices *)
    dotRow[r_, s_, n_] := Map[Sum[r[n, k] s[k, #], {k, #, n}]&, Range[0, n]]
    dotTriangle[r_, s_, n_] := Map[dotRow[r, s, #]&, Range[0, n]]
    (* The pure function in the first argument computes A128174 *)
    a128176[r_] := dotTriangle[If[EvenQ[#1 + #2], 1, 0]&, Binomial, r]
    TableForm[a128176[7]] (* triangle *)
    Flatten[a128176[9]] (* data *) (* Hartmut F. W. Hoft, Mar 15 2017 *)
    T[n_, n_] := 1; T[n_, 0] := 1 + Floor[n/2]; T[n_, k_] := T[n, k] = T[n - 1, k - 1] + T[n - 1, k]; Table[T[n, k], {n,0,20}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 30 2017 *)
  • PARI
    for(n=0, 10, for(k=0,n, print1(sum(i=0,floor(n/2), binomial(n - 2*i,k)), ", "))) \\ G. C. Greubel, Sep 30 2017

Formula

A128174 * A007318 (Pascal's triangle), as infinite lower triangular matrices.
From Peter Bala, Aug 14 2014: (Start)
Working with a row and column offset of 0 we have T(n,k) = Sum_{i = 0..floor(n/2)} binomial(n - 2*i,k).
O.g.f.: 1/( (1 - z^2)*(1 - z*(1 + x)) ) = Sum_{n >= 0} R(n,x)*z^n = 1 + (1 + x)*z + (2 + 2*x + x^2)*z^2 + ....
The row polynomials satisfy R(n+2,x) - R(n,x) = (1 + x)^(n+1). (End)
From Hartmut F. W. Hoft, Mar 15 2017: (Start)
Using offset 0, the triangle has the Pascal Triangle recursion pattern:
T(n, 0) = 1 + floor(n/2) and T(n, n) = 1, for n >= 0;
T(n, k) = T(n-1, k-1) + T(n-1, k) for n > 0 and 0 < k < n. (End)