A128176 A128174 * A007318.
1, 1, 1, 2, 2, 1, 2, 4, 3, 1, 3, 6, 7, 4, 1, 3, 9, 13, 11, 5, 1, 4, 12, 22, 24, 16, 6, 1, 4, 16, 34, 46, 40, 22, 7, 1, 5, 20, 50, 80, 86, 62, 29, 8, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 1; 2, 2, 1; 2, 4, 3, 1; 3, 6, 7, 4, 1; 3, 9, 13, 11, 5, 1; 4, 12, 22, 24, 16, 6, 1; 4, 16, 34, 46, 40, 22, 7, 1; ... From _Peter Bala_, Aug 14 2014: (Start) Row 4: [2,4,3,1]. k Binary words in B_4 with k 1's Number - - - - - - - - - - - - - - - - - - - - - - - - - - 1 0001, 0100 2 2 0011, 0101, 1001, 1100 4 3 0111, 1011, 1101 3 4 1111 1 - - - - - - - - - - - - - - - - - - - - - - - - - - The infinitesimal generator matrix begins 0 1 0 1 2 0 -1 1 3 0 1 -1 1 4 0 -1 1 -1 1 5 0 ... Cf. A132440. (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Part IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13, Springer, Berlin, 1932. See p. 434.
Crossrefs
Cf. A035317 (mirror). [Johannes W. Meijer, Jul 20 2011]
Programs
-
Mathematica
(* Dot product of two lower triangular matrices *) dotRow[r_, s_, n_] := Map[Sum[r[n, k] s[k, #], {k, #, n}]&, Range[0, n]] dotTriangle[r_, s_, n_] := Map[dotRow[r, s, #]&, Range[0, n]] (* The pure function in the first argument computes A128174 *) a128176[r_] := dotTriangle[If[EvenQ[#1 + #2], 1, 0]&, Binomial, r] TableForm[a128176[7]] (* triangle *) Flatten[a128176[9]] (* data *) (* Hartmut F. W. Hoft, Mar 15 2017 *) T[n_, n_] := 1; T[n_, 0] := 1 + Floor[n/2]; T[n_, k_] := T[n, k] = T[n - 1, k - 1] + T[n - 1, k]; Table[T[n, k], {n,0,20}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 30 2017 *)
-
PARI
for(n=0, 10, for(k=0,n, print1(sum(i=0,floor(n/2), binomial(n - 2*i,k)), ", "))) \\ G. C. Greubel, Sep 30 2017
Formula
From Peter Bala, Aug 14 2014: (Start)
Working with a row and column offset of 0 we have T(n,k) = Sum_{i = 0..floor(n/2)} binomial(n - 2*i,k).
O.g.f.: 1/( (1 - z^2)*(1 - z*(1 + x)) ) = Sum_{n >= 0} R(n,x)*z^n = 1 + (1 + x)*z + (2 + 2*x + x^2)*z^2 + ....
The row polynomials satisfy R(n+2,x) - R(n,x) = (1 + x)^(n+1). (End)
From Hartmut F. W. Hoft, Mar 15 2017: (Start)
Using offset 0, the triangle has the Pascal Triangle recursion pattern:
T(n, 0) = 1 + floor(n/2) and T(n, n) = 1, for n >= 0;
T(n, k) = T(n-1, k-1) + T(n-1, k) for n > 0 and 0 < k < n. (End)
Comments