cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128209 Jacobsthal numbers(A001045) + 1.

Original entry on oeis.org

1, 2, 2, 4, 6, 12, 22, 44, 86, 172, 342, 684, 1366, 2732, 5462, 10924, 21846, 43692, 87382, 174764, 349526, 699052, 1398102, 2796204, 5592406, 11184812, 22369622, 44739244, 89478486, 178956972, 357913942, 715827884, 1431655766, 2863311532, 5726623062
Offset: 0

Views

Author

Paul Barry, Feb 19 2007

Keywords

Comments

Row sums of A128208.
Essentially the same as A052953. - R. J. Mathar, Jun 14 2008
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n >= 1, a(n+1) is the number of different representations of matrix P^(-1)+I+P by sum of permutation matrices. - Vladimir Shevelev, Apr 12 2010
a(n) is the rank of Fibonacci(n+2) in row n of A049456 (regarded as an irregular triangle read by rows). - N. J. A. Sloane, Nov 23 2016

References

  • V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19. [From Vladimir Shevelev, Apr 12 2010]

Crossrefs

Programs

Formula

a(n) = 1 + 2^n/3 - (-1)^n/3.
G.f.: (1-3*x^2)/(1 - 2*x - x^2 + 2*x^3).