A128363 a(n) = least k such that the remainder when 23^k is divided by k is n.
2, 3, 5, 19, 262, 17, 58, 9, 10, 13, 14, 55, 86, 12153, 514, 111823, 95, 25, 30, 12147, 68, 235, 29, 280517, 56, 27, 502, 16805, 51, 49, 166, 35, 62, 1837, 38, 977969, 82, 39, 1370, 289, 122, 9822698929535, 65, 133, 697, 161, 303, 19445, 50, 147, 259, 1247
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
t = Table[0, {10000} ]; k = 1; While[ k < 4000000000, a = PowerMod[23, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 04 2009 *) Table[Module[{k=1},While[PowerMod[23,k,k]!=n,k++];k],{n,35}] (* The program generates the first 35 terms of the sequence. *) (* Harvey P. Dale, Jul 18 2025 *)
Extensions
a(42), a(64) from Hagen von Eitzen, Aug 04 2009
a(750), a(770), a(234), a(274), a(406), a(600), a(610), a(754) from Daniel Morel, May 31, Aug 24, Sep 20 2010
a(84) from Max Alekseyev, Apr 13 2012