A128492 Denominator of Sum_{k=1..n} 1/(2*k-1)^2.
1, 9, 225, 11025, 99225, 12006225, 2029052025, 405810405, 117279207045, 42337793743245, 42337793743245, 22396692890176605, 2799586611272075625, 25196279501448680625, 21190071060718340405625
Offset: 1
Examples
Fractions begin: 1, 10/9, 259/225, 12916/11025, 117469/99225, 14312974/12006225, 2430898831/2029052025, 487983368/405810405, ... = A120268/A128492.
Links
- Wolfdieter Lang, Rationals and limit.
Crossrefs
Cf. A120268 (numerators).
Programs
-
Mathematica
a[n_] := Pi^2/8 - PolyGamma[1, n+1/2]/4 // Simplify // Denominator; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Dec 17 2013 *)
-
PARI
a(n) = denominator(sum(k=1, n, 1/(2*k-1)^2)); \\ Michel Marcus, May 09 2020
Formula
a(n) = denominator( Pi^2/2 - Zeta(2,(2*n+1)/2) ) for n > 0; see Artur Jasinski in A120268. - Bruno Berselli, Dec 02 2013
Also equals denominator( Pi^2/8 - PolyGamma(1, n+1/2)/4 ). - Jean-François Alcover, Dec 17 2013
Extensions
Definition replaced with Lang's formula by Bruno Berselli, Dec 02 2013
Comments