A120268
Numerator of Sum_{k=1..n} 1/(2*k-1)^2.
Original entry on oeis.org
1, 10, 259, 12916, 117469, 14312974, 2430898831, 487983368, 141433003757, 51174593563322, 51270597630767, 27164483940418988, 3400039831130408821, 30634921277843705014, 25789165074168004597399
Offset: 1
Fractions begin: 1, 10/9, 259/225, 12916/11025, 117469/99225, 14312974/12006225, 2430898831/2029052025, 487983368/405810405, ... = A120268/A128492.
-
[Numerator((&+[1/(2*k-1)^2: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
-
Numerator[Table[Sum[1/(2k-1)^2,{k,1,n}],{n,1,25}]]
Table[(PolyGamma[1, 1/2] - PolyGamma[1, n+1/2])/4 // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
Accumulate[1/(2*Range[20]-1)^2]//Numerator (* Harvey P. Dale, Jun 14 2020 *)
-
for(n=1,20, print1(numerator(sum(k=1,n, 1/(2*k-1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
A164655
Numerators of partial sums of Theta(3) = Sum_{j>=1} 1/(2*j-1)^3.
Original entry on oeis.org
1, 28, 3527, 1213136, 32797547, 43684790932, 96017087247229, 96044168328256, 471956397645187853, 3237597973008257555852, 462561506842656976961, 5628425850334528955928112, 703596058798919360293439483, 18998011529681231695738912916, 463360571051954739540899597748949
Offset: 1
Rationals Theta(3,n): [1, 28/27, 3527/3375, 1213136/1157625, 32797547/31255875, 43684790932/41601569625, ...].
-
r[n_] := Sum[1/(2*j-1)^3, {j, 1, n}]; (* or r[n_] := (PolyGamma[2, n+1/2] - PolyGamma[2, 1/2])/16 // FullSimplify; *) Table[r[n] // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
A164656
Numerators of partial sums of Theta(5) = sum( 1/(2*j-1)^5, j=1..infinity ).
Original entry on oeis.org
1, 244, 762743, 12820180976, 3115356499043, 501734380891571068, 186290962962179367466549, 186291207179611798681792, 264507060005034822095008296869, 654945930087597102815813733559637156, 654946089730308117005814730177159031, 4215458332009996232497953858159263996273008
Offset: 1
Rationals Theta(5,n): [1, 244/243, 762743/759375, 12820180976/12762815625, 3115356499043/3101364196875,...].
-
r[n_] := Sum[1/(2*j-1)^5, {j, 1, n}]; (* or r[n_] := (PolyGamma[4, n+1/2] - PolyGamma[4, 1/2])/768 // FullSimplify; *) Table[r[n] // Numerator, {n, 1, 12}] (* Jean-François Alcover, Dec 02 2013 *)
A370691
Square array read by upward antidiagonals: T(n, k) = denominator( 2*k!*(-2)^k*Sum_{m=1..n}( 1/(2*m-1)^(k+1) ) ).
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 15, 9, 1, 1, 105, 225, 27, 1, 765765, 405810405, 91398648466125, 48049812916875, 1033788065625, 89339709375, 3796875, 729, 1, 1, 1, 315, 11025, 3375, 27, 1, 1, 3465, 99225, 1157625, 16875, 81, 1, 1, 45045, 12006225, 31255875, 40516875, 253125, 243, 1, 1, 45045, 2029052025
Offset: 0
array begins:
1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1
3, 9, 27, 27, 81, 243
15, 225, 3375, 16875, 253125, 759375
105, 11025, 1157625, 40516875, 4254271875, 89339709375
315, 99225, 31255875, 3281866875, 1033788065625, 65128648134375
3465, 12006225, 41601569625, 48049812916875, 166492601756971875, 115379373017581509375
Cf.
A255008 (denominators polygamma(n, 1) - polygamma(n, k)).
Cf.
A255009 (numerators polygamma(n, 1) - polygamma(n, k)).
-
A := (n, k) -> Psi(k, n + 1/2) - Psi(k, 1/2):
seq(lprint(seq(denom(A(n, k)), k = 0..4)), n=0..6);
-
T(n, k) = denominator(sum(m=1, n, 1/(2*m-1)^(k+1))*k!*(-2)^k*2)
Showing 1-4 of 4 results.
Comments