cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128607 Perfect (or pure) powers pp such that sigma(pp) is also a perfect (pure) power.

Original entry on oeis.org

1, 81, 343, 400, 32400, 1705636, 3648100, 138156516, 295496100, 1055340196, 1476326929, 1857437604, 2263475776, 2323432804, 2592846400, 2661528100, 7036525456, 10994571025, 17604513124, 39415749156, 61436066769, 85482555876, 90526367376, 97577515876, 98551417041
Offset: 1

Views

Author

Walter Kehowski, Mar 20 2007

Keywords

Comments

Denote by egcd(n) the gcd of all the powers in the prime factorization of n. In our context, a square has egcd=2, a cube has egcd=3 and so on. The only elements n in the sequence for which egcd(n)>2 are 81 and 343. Are there any others? Conjecture I: egcd(A128607(n))=2 for all n>2. Let A128608(n)=sigma(A128607(n)). Note that A128607(11)=1857437604=(2^2)*(3^2)*(11^2)*(653^2) has A128608(11)=5168743489=(7^3)*(13^3)*(19^3). Any other cubes or higher egcd's in A128608? Conjecture II: egcd(A128608(n))=2 for all n ne 11.

Crossrefs

Programs

  • Magma
    [1] cat [n : n in [2..4*10^6] | IsPower(n) and IsPower(SumOfDivisors(n))]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    N:= 10^13: # to get all terms <= N
    pows:= {1, seq(seq(n^k, n = 2 .. floor(N^(1/k))), k = 2 .. floor(log[2](N)))}:
    filter:= proc(n) local s, F;
       s:= numtheory:-sigma(n);
       F:= map(t -> t[2], ifactors(s)[2]);
       igcd(op(F)) >= 2
    end proc:
    filter(1):= true:
    sort(convert(select(filter, pows),list)); # Robert Israel, Feb 14 2016
  • Mathematica
    M = 10^13;
    pows = {1, Table[Table[n^k, {n, 2, Floor[M^(1/k)]}], {k, 2, Floor[Log[2, M] ]}]} // Flatten // Union;
    okQ[n_] := Module[{s, F}, s = DivisorSigma[1, n]; F = FactorInteger[s][[All, 2]]; GCD @@ F >= 2];
    okQ[1] = True;
    Select[pows, okQ] (* Jean-François Alcover, Apr 12 2019, after Robert Israel *)
  • PARI
    isok(n) = (n==1) || (ispower(n) && ispower(sigma(n))); \\ Michel Marcus, Feb 14 2016
    

Extensions

Missing terms 1, 10994571025, 17604513124, 39415749156 added by Zak Seidov, Feb 14 2016
Missing terms 61436066769, 90526367376, 97577515876, 98551417041 added by Robert Israel, Feb 14 2016