A128607 Perfect (or pure) powers pp such that sigma(pp) is also a perfect (pure) power.
1, 81, 343, 400, 32400, 1705636, 3648100, 138156516, 295496100, 1055340196, 1476326929, 1857437604, 2263475776, 2323432804, 2592846400, 2661528100, 7036525456, 10994571025, 17604513124, 39415749156, 61436066769, 85482555876, 90526367376, 97577515876, 98551417041
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..58
Programs
-
Magma
[1] cat [n : n in [2..4*10^6] | IsPower(n) and IsPower(SumOfDivisors(n))]; // Vincenzo Librandi, Feb 15 2016
-
Maple
N:= 10^13: # to get all terms <= N pows:= {1, seq(seq(n^k, n = 2 .. floor(N^(1/k))), k = 2 .. floor(log[2](N)))}: filter:= proc(n) local s, F; s:= numtheory:-sigma(n); F:= map(t -> t[2], ifactors(s)[2]); igcd(op(F)) >= 2 end proc: filter(1):= true: sort(convert(select(filter, pows),list)); # Robert Israel, Feb 14 2016
-
Mathematica
M = 10^13; pows = {1, Table[Table[n^k, {n, 2, Floor[M^(1/k)]}], {k, 2, Floor[Log[2, M] ]}]} // Flatten // Union; okQ[n_] := Module[{s, F}, s = DivisorSigma[1, n]; F = FactorInteger[s][[All, 2]]; GCD @@ F >= 2]; okQ[1] = True; Select[pows, okQ] (* Jean-François Alcover, Apr 12 2019, after Robert Israel *)
-
PARI
isok(n) = (n==1) || (ispower(n) && ispower(sigma(n))); \\ Michel Marcus, Feb 14 2016
Extensions
Missing terms 1, 10994571025, 17604513124, 39415749156 added by Zak Seidov, Feb 14 2016
Missing terms 61436066769, 90526367376, 97577515876, 98551417041 added by Robert Israel, Feb 14 2016
Comments