A128608 a(n)=sigma(A128607(n)), where A128607(n) is the sequence of perfect (or pure) powers such that a(n) is a perfect power.
1, 121, 400, 961, 116281, 2989441, 7958041, 361722361, 962922961, 1902442689, 1891467081, 5168743489, 4755619521, 5215583961, 6835486329, 7496615889, 13884144561, 13884144561, 35018011161, 120776405841, 120776405841, 230195565369, 253358202409, 171651947481
Offset: 1
Keywords
Examples
a(2) = sigma(A128607(2)) = sigma(343) = 1+7+7^2+7^3 = 400 = 2^4*5^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..58
Programs
-
Maple
N:= 10^13: # to get all terms where A128607(n) <= N pows:= {1, seq(seq(n^k, n = 2 .. floor(N^(1/k))), k = 2 .. floor(log[2](N)))}: filter:= proc(n) local s, F; s:= numtheory:-sigma(n); F:= map(t -> t[2], ifactors(s)[2]); igcd(op(F)) >= 2 end proc: filter(1):= true: A128608:= sort(convert((filter, pows), list)): map(numtheory:-sigma,A128608); # Robert Israel, Feb 14 2016
-
Mathematica
M = 10^13; (* to get all terms where A128607(n) <= M *) pows = {1, Table[Table[n^k, {n, 2, Floor[M^(1/k)]}], {k, 2, BitLength[M]-1}]} // Flatten // Union; okQ[n_] := Module[{s, F}, s = DivisorSigma[1, n]; F = FactorInteger[s][[All, 2]]; GCD @@ F >= 2]; okQ[1] = True; DivisorSigma[1, #]& /@ Select[pows, okQ] (* Jean-François Alcover, Feb 09 2023, after Robert Israel *)
Extensions
1, 13884144561, 35018011161, 120776405841, added by Zak Seidov, Feb 14 2016
Edited by Robert Israel, Feb 14 2016
Comments