cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A180114 a(n) = sigma(A001694(n)), sum of divisors of the powerful number A001694(n).

Original entry on oeis.org

1, 7, 15, 13, 31, 31, 40, 63, 91, 57, 127, 195, 121, 217, 280, 133, 156, 255, 403, 183, 399, 465, 600, 403, 364, 511, 819, 307, 847, 400, 381, 855, 961, 1240, 741, 931, 1092, 1023, 553, 1651, 781, 1815, 1240, 1281, 1093, 1767, 1953, 871, 2520, 2821, 993, 1995
Offset: 1

Views

Author

Walter Kehowski, Aug 10 2010

Keywords

Examples

			Sigma(2^2) = 7, sigma(2^3) = 15, sigma(3^2) = 13.
		

Crossrefs

Programs

  • Maple
    emin := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); min(L) else 0 fi end: L:=[]: for w to 1 do for n from 1 to 144 do sn:=sigma(n); if emin(n)>1 then L:=[op(L),sn]; print(n,ifactor(n),sn,ifactor(sn)) fi; od; od;
  • Mathematica
    pwfQ[n_] := n == 1 || Min[Last /@ FactorInteger[n]] > 1; DivisorSigma[1, Select[ Range@ 1000, pwfQ]] (* Giovanni Resta, Feb 06 2018 *)
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 1, print1(sigma(k), ", "))); \\ Amiram Eldar, May 12 2023
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A180114_gen(): # generator of terms
        for n in count(1):
            f = factorint(n)
            if all(e>1 for e in f.values()):
                yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())
    A180114_list = list(islice(A180114_gen(),20)) # Chai Wah Wu, May 21 2023
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot, divisor_sigma
    def A180114(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2, 3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x, 3)[0])-l
            return c
        return divisor_sigma(bisection(f, n, n)) # Chai Wah Wu, Sep 10 2024

Formula

From Amiram Eldar, May 12 2023: (Start)
Sum_{A001694(k) < x} a(k) = c * x^(3/2) + O(x^(23/18 + eps)), where c = A362984 * A090699 / 3 = 1.5572721108... (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ c * n^3, where c = A362984 / (3 * A090699^2) = 0.151716514097... . (End)

Extensions

a(1)=1 prepended by and more terms from Giovanni Resta, Feb 06 2018

A337045 Indecomposable sigma-powerful numbers: powerful numbers k such that sigma(k) is also powerful, but restricted to terms that are not the product of 2 terms > 1 of A337044.

Original entry on oeis.org

81, 343, 400, 9261, 189728, 224939, 972000, 1705636, 2205472, 3087000, 3591200, 3648100, 7968032, 13645088, 15350724, 21161304, 24240600, 25992000, 26680500, 29184800, 32832900, 48586824, 51595489, 80802000, 103617387, 109215352, 110215125, 119604096, 122805792
Offset: 1

Views

Author

Hugo Pfoertner, Aug 15 2020

Keywords

Comments

This is an implementation of the suggestion that Walter A. Kehowski made on his website (see link) with regard to so-called indecomposable sigma-powerful numbers. However, the results deviate from the table linked there. The table is considered to be deficient.

Examples

			From _David A. Corneth_, Aug 29 2020: (Start)
No two proper divisors of 400 are sigma-powerful and have the product of those divisors 400 so 400 is in the sequence.
27783 = 81 * 343 is sigma-powerful but 81 and 343 are sigma-powerful as well so 27783 can be decomposed into two sigma-powerful factors. So 27783 is not in the sequence. (End)
		

Crossrefs

Programs

  • PARI
    v=vector(50); n=0;
    for(m=2, 150000000, my(is); if(ispowerful(m) && ispowerful(sigma(m)), v[n++]=m; is=1; for(j=1, n-1, if(v[n]%v[j], , if(vecsearch(v[1..n-1], v[n]/v[j]), is=0; break))); if(is, print1(v[n], ", "))))

A180097 Numbers n such that sigma(n) is powerful.

Original entry on oeis.org

1, 3, 7, 21, 22, 30, 31, 46, 51, 55, 66, 70, 71, 81, 85, 93, 94, 102, 107, 110, 115, 119, 127, 138, 142, 154, 156, 159, 165, 170, 187, 199, 210, 213, 214, 217, 230, 235, 238, 253, 255, 265, 282, 291, 310, 318, 321, 322, 330, 343, 345, 355, 357, 364, 371, 374
Offset: 1

Views

Author

Walter Kehowski, Aug 10 2010

Keywords

Examples

			sigma(3)=2^2, sigma(7)=2^3, sigma(21)=2^5, sigma(66)=2^4*3^2.
		

Crossrefs

Programs

  • Maple
    emin := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); min(L) else 0 fi end: L:=[]: for w to 1 do for n from 1 to 144 do sn:=numtheory[sigma](n); if emin(sn)>1 then L:=[op(L),n]; print(n,ifactor(n),sn,ifactor(sn)) fi; od; od; L;
  • Mathematica
    sigmaPowerQ[1] = True; sigmaPowerQ[n_] := Min@FactorInteger[DivisorSigma[1, n]][[;; , 2]] > 1; Select[Range[1000], sigmaPowerQ] (* Amiram Eldar, Sep 08 2019 *)
  • PARI
    isok(n) = ispowerful(sigma(n)); \\ Michel Marcus, Sep 08 2019

Extensions

a(1) and more terms from Amiram Eldar, Sep 08 2019

A180098 Sigma(A180097(n)), sum of divisors of A180097(n), numbers n such that sigma(n) is powerful.

Original entry on oeis.org

1, 4, 8, 32, 36, 72, 32, 72, 72, 72, 144, 144, 72, 121, 108, 128, 144, 216, 108, 216, 144, 144, 128, 288, 216, 288, 392, 216, 288, 324, 216, 200, 576, 288, 324, 256, 432, 288, 432, 288, 432, 324, 576, 392, 576, 648, 432, 576, 864, 400, 576, 432, 576, 784, 432
Offset: 1

Views

Author

Walter Kehowski, Aug 10 2010

Keywords

Examples

			Sigma(3)=2^2, sigma(7)=2^3, sigma(21)=2^5, sigma(66)=2^4*3^2.
		

Crossrefs

Programs

  • Maple
    emin := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); min(L) else 0 fi end: L:=[]: for w to 1 do for n from 1 to 144 do sn:=numtheory[sigma](n); if emin(sn)>1 then L:=[op(L),n]; print(n,ifactor(n),sn,ifactor(sn)) fi; od; od; L; map(numtheory[sigma],L);
  • Mathematica
    sigmaPowerQ[1] = True; sigmaPowerQ[n_] := Min@FactorInteger[DivisorSigma[1, n]][[;; , 2]] > 1; DivisorSigma[1, #] & /@ Select[Range[400], sigmaPowerQ] (* Amiram Eldar, Sep 08 2019 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (ispowerful(s=sigma(n)), print1(s, ", ")););} \\ Michel Marcus, Sep 08 2019

Extensions

a(1) and more terms from Amiram Eldar, Sep 08 2019

A337044 Numbers k such that both k and sigma(k)=A000203(k) are powerful, i.e., are terms of A001694.

Original entry on oeis.org

1, 81, 343, 400, 9261, 27783, 32400, 137200, 189728, 224939, 972000, 1705636, 2205472, 3087000, 3591200, 3648100, 3704400, 7968032, 11113200, 13645088, 15350724, 15367968, 18220059, 21161304, 24240600, 25992000, 26680500, 29184800, 32832900, 48586824, 51595489
Offset: 1

Views

Author

Andrew Howroyd and Hugo Pfoertner, Aug 12 2020

Keywords

Comments

From David A. Corneth, Aug 14 2020: (Start)
If coprime numbers k and m are in the sequence then k*m is in the sequence.
Up to 10^15, the largest prime divisor of a term is 178987 for which the product of the primes with multiplicity 1 of sigma(178987^2) is 16653 = 3 * 7 * 13 * 61. The second largest prime divisor is 25073 (for which sigma(25073^2) has a product of primes with multiplicity 1 of 341 = 11 * 31), which is quite a bit smaller than 178987. Can we somehow constrain the list of possible prime divisors to ease computation? (End)

Crossrefs

Programs

  • PARI
    for(k=1, 60000000, if(ispowerful(k) && ispowerful(sigma(k)), print1(k, ", ")))
    
  • PARI
    \\ See Corneth link \\ David A. Corneth, Aug 14 2020

A349109 Powerful numbers (A001694) whose sum of powerful divisors (including 1) is also powerful.

Original entry on oeis.org

1, 64, 243, 441, 1764, 9800, 15552, 28224, 41616, 60516, 82369, 88200, 189728, 226576, 329476, 336200, 648675, 741321, 968256, 1317904, 1428025, 1707552, 1943236, 2039184, 2056356, 2381400, 2446227, 2798929, 2965284, 2986568, 4372281, 5189400, 5271616, 6508832
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

Numbers k such that A112526(k) = A112526(A183097(k)) = 1.

Examples

			64 = 2^6 is a term since it is powerful and the sum of its powerful divisors, A183097(64) =  1 + 4 + 8 + 16 + 32 + 64 = 125 = 5^3 is also powerful.
		

Crossrefs

Programs

  • Mathematica
    powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;;,2]], # > 1 &]; f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := powQ[n] && powQ[s[n]]; Select[Range[7*10^6], q]
  • PARI
    isok(n) = ispowerful(n) && ispowerful(sumdiv(n, d, d*ispowerful(d))); \\ Michel Marcus, Nov 08 2021
    
  • PARI
    is(k) = {my(f = factor(k)); ispowerful(f) && ispowerful(prod(i = 1, #f~, (f[i,1]^(f[i,2]+1) - 1)/(f[i,1] - 1) - f[i,1]));} \\ Amiram Eldar, Sep 14 2024
Showing 1-6 of 6 results.