cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A037144 Numbers with at most 3 prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 86
Offset: 1

Views

Author

Keywords

Comments

Complement of A033987: A001222(a(n))<=3; A117358(a(n))=1. - Reinhard Zumkeller, Mar 10 2006
Also numbers such that exist permutations of all proper divisors only with coprime adjacent elements: A178254(a(n))>0. - Reinhard Zumkeller, May 24 2010

Crossrefs

A037143 is a subsequence.

Programs

  • Magma
    [ n: n in [1..86] | n eq 1 or &+[ t[2]: t in Factorization(n) ] le 3 ]; /* Klaus Brockhaus, Mar 20 2007 */
    
  • Mathematica
    Select[Range[100],PrimeOmega[#]<4&] (* Harvey P. Dale, Oct 15 2015 *)
  • PARI
    is(n)=bigomega(n)<4 \\ Charles R Greathouse IV, Sep 14 2015
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A037144(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-2-primepi(x)-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,4)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

a(n) ~ 2n log n/(log log n)^2. - Charles R Greathouse IV, Sep 14 2015

Extensions

More terms from Reinhard Zumkeller, Mar 10 2006
More terms from Klaus Brockhaus, Mar 20 2007

A128645 Number of groups of order A128691(n).

Original entry on oeis.org

2, 2, 5, 2, 5, 2, 15, 2, 4, 2, 2, 14, 4, 2, 52, 5, 13, 2, 2, 5, 2, 4, 52, 2, 2, 12, 4, 2, 231, 14, 2, 43, 5, 2, 2, 4, 2, 15, 2, 2, 5, 12, 2, 238, 5, 2, 4, 42, 2, 12, 4, 1543, 2, 2, 2, 51, 5, 2, 2, 197, 2, 14, 4, 5, 12, 2, 2, 4, 54, 2, 2, 4, 5, 14, 2, 2, 42, 2, 4, 1640, 2, 15, 4, 2, 12, 2, 195, 5, 2
Offset: 1

Views

Author

Klaus Brockhaus, Mar 21 2007

Keywords

Comments

Number of groups whose order is of form 2^k*p, where 1 <= k <= 8 and p is a prime > 2.
The groups of these orders (up to A128691(112490698) = 2147483636 in version V2.13-4) form a class contained in the Small Groups Library of Magma.

Examples

			A128691(7) = 24 and there are 15 groups of order 24 (A000001(24) = 15), hence a(7) = 15.
		

Crossrefs

Cf. A000001 (number of groups of order n), A128691 (numbers of form 2^k*p, 1<=k<=8, p > 2 prime), A128604 (number of groups whose order divides p^6 for p a prime), A128644 (number of groups whose order has at most 3 prime factors).

Programs

  • Magma
    D := SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [ h: h in [1..360] | #t eq 2 and t[1, 1] eq 2 and t[1, 2] le 8 and t[2, 2] eq 1 where t is Factorization(h) ] ];

Formula

a(n) = A000001(A128691(n)).

A128694 Number of groups of order A128693(n).

Original entry on oeis.org

2, 1, 5, 2, 1, 2, 2, 1, 15, 2, 4, 1, 1, 2, 2, 2, 4, 1, 2, 5, 1, 2, 1, 55, 5, 1, 2, 13, 2, 2, 1, 2, 2, 1, 2, 1, 4, 2, 5, 1, 2, 1, 2, 5, 1, 14, 2, 2, 4, 1, 16, 1, 2, 2, 1, 2, 5, 2, 2, 261, 2, 1, 15, 1, 2, 1, 2, 4, 49, 1, 2, 1, 2, 4, 5, 2, 2, 5, 2, 1, 2, 1, 4, 1, 2, 2, 1, 1, 5, 1, 2, 1, 2, 2, 13, 1, 2, 4, 1, 15, 2
Offset: 1

Views

Author

Klaus Brockhaus, Mar 26 2007

Keywords

Comments

Number of groups for orders of form 3^k*p, where 1 <= k <= 6 and p is a prime different from 3.
The groups of these orders (up to A128693(84005521) = 3221225379 in version V2.13-4) form a class contained in the Small Groups Library of MAGMA.

Examples

			A128693(9) = 54 and there are 15 groups of order 54 (A000001(54) = 15), hence a(9) = 15.
		

Crossrefs

Cf. A000001 (number of groups of order n), A128693 (numbers of form 3^k*p, 1<=k<=6, p!=3 prime), A128604 (number of groups for orders that divide p^6, p prime), A128644 (number of groups for orders that have at most 3 prime factors), A128645 (number of groups for orders of form 2^k*p, 1<=k<=8 and p>2 prime).

Programs

  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n): n in [ h: h in [1..910] | #t eq 2 and ((t[1, 1] eq 2 and t[1, 2] eq 1 and t[2, 1] eq 3 and t[2, 2] le 6) or (t[1, 1] eq 3 and t[1, 2] le 6 and t[2, 2] eq 1)) where t is Factorization(h) ] ];

Formula

a(n) = A000001(A128693(n)).

A128704 Number of groups of order A128703(n).

Original entry on oeis.org

2, 1, 1, 5, 2, 1, 3, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 15, 1, 4, 1, 2, 2, 1, 2, 1, 7, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 2, 1, 2, 55, 2, 1, 1, 2, 1, 2, 15, 1, 2, 1, 1, 2, 4, 1, 2, 1, 1, 5, 2, 2, 1, 1, 1, 1, 4, 1, 2, 1, 1, 21, 1, 1, 1, 2
Offset: 1

Views

Author

Klaus Brockhaus, Mar 26 2007

Keywords

Comments

Number of groups for orders of form 5^k*p, where 1 <= k <= 5 and p is a prime different from 5.
The groups of these orders (up to A128703(69556991) = 5368708945 in version V2.13-4) form a class contained in the Small Groups Library of MAGMA.

Examples

			A128703(20) = 275 and there are 4 groups of order 275 (A000001(275) = 4), hence a(20) = 4.
		

Crossrefs

Cf. A000001 (number of groups of order n), A128703 (numbers of form 5^k*p, 1<=k<=5, p!=5 prime), A128604 (number of groups for orders that divide p^6, p prime), A128644 (number of groups for orders that have at most 3 prime factors), A128645 (number of groups for orders of form 2^k*p, 1<=k<=8, p>2 prime), A128694 (number of groups for orders of form 3^k*p, 1<=k<=6, p!=3 prime).

Programs

  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n): n in [ h: h in [1..2000] | #t eq 2 and ((t[1, 1] lt 5 and t[1, 2] eq 1 and t[2, 1] eq 5 and t[2, 2] le 5) or (t[1, 1] eq 5 and t[1, 2] le 5 and t[2, 2] eq 1)) where t is Factorization(h) ] ];

Formula

a(n) = A000001(A128703(n)).

A128706 Number of groups of order A128705(n).

Original entry on oeis.org

2, 2, 1, 1, 1, 5, 1, 1, 6, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 15, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 19, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 2, 2, 1, 1, 1, 1, 2, 1, 5, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Klaus Brockhaus, Mar 26 2007

Keywords

Comments

Number of groups for orders of form 7^k*p, where 1 <= k <= 4 and p is a prime different from 7.
The groups of these orders (up to A128705(64633879) = 7516192523 in version V2.13-4) form a class contained in the Small Groups Library of MAGMA.

Examples

			A128705(30) = 686 and there are 15 groups of order 686 (A000001(686) = 15), hence a(30) = 15.
		

Crossrefs

Cf. A000001 (number of groups of order n), A128705 (numbers of form 7^k*p, 1<=k<=4, p!=7 prime), A128604 (number of groups for orders that divide p^6, p prime), A128644 (number of groups for orders that have at most 3 prime factors), A128645 (number of groups for orders of form 2^k*p, 1<=k<=8, p>2 prime), A128694 (number of groups for orders of form 3^k*p, 1<=k<=6, p!=3 prime), A128704 (number of groups for orders of form 5^k*p, 1<=k<=5, p!=5 prime).

Programs

  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n): n in [ h: h in [1..3500] | #t eq 2 and ((t[1, 1] lt 7 and t[1, 2] eq 1 and t[2, 1] eq 7 and t[2, 2] le 4) or (t[1, 1] eq 7 and t[1, 2] le 4 and t[2, 2] eq 1)) where t is Factorization(h) ] ];

Formula

a(n) = A000001(A128705(n)).
Showing 1-5 of 5 results.