cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A254632 Triangle read by rows, T(n, k) = 4^n*[x^k]hypergeometric([3/2, -n], [3], -x), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 4, 2, 16, 16, 5, 64, 96, 60, 14, 256, 512, 480, 224, 42, 1024, 2560, 3200, 2240, 840, 132, 4096, 12288, 19200, 17920, 10080, 3168, 429, 16384, 57344, 107520, 125440, 94080, 44352, 12012, 1430, 65536, 262144, 573440, 802816, 752640, 473088, 192192, 45760, 4862
Offset: 0

Views

Author

Peter Luschny, Feb 03 2015

Keywords

Examples

			[   1]
[   4,     2]
[  16,    16,     5]
[  64,    96,    60,    14]
[ 256,   512,   480,   224,    42]
[1024,  2560,  3200,  2240,   840,  132]
[4096, 12288, 19200, 17920, 10080, 3168, 429]
		

Crossrefs

Programs

  • Maple
    h := n -> simplify(hypergeom([3/2, -n], [3], -x)):
    seq(print(seq(4^n*coeff(h(n), x, k), k=0..n)), n=0..9);
  • Mathematica
    T[n_, k_] := 4^(n-k) Binomial[n, k] CatalanNumber[k+1];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 28 2019 *)
  • Sage
    A254632 = lambda n,k: (4)^(n-k)*binomial(n,k)*catalan_number(k+1)
    for n in range(7): [A254632(n,k) for k in (0..n)]

Formula

T(n,0) = A000302(n).
T(n,n) = A000108(n+1).
T(n,1) = A002699(n) for n>=1.
T(n,n-1) = A128650(n+2) for n>=1.
T(2*n,n) = A254633(n).
T(n,k) = 4^(n-k)*C(n,k)*Catalan(k+1).
sum(k=0..n, T(n,k)) = A025230(n+2).

A164991 Number of triangular involutions of n. A triangular involution is a square involution with at most three faces.

Original entry on oeis.org

1, 1, 3, 6, 13, 26, 54, 108, 221, 442, 898, 1796, 3634, 7268, 14668, 29336, 59101, 118202, 237834, 475668, 956198, 1912396, 3841588, 7683176, 15425138, 30850276, 61908564, 123817128, 248377156, 496754312
Offset: 1

Views

Author

Simone Rinaldi (rinaldi(AT)unisi.it), Sep 04 2009

Keywords

Comments

The sequence 2^(n+1) - binomial(n, floor(n/2)), which begins 1,3,6,... has Hankel transform (-1)^n*(2*n+1) (A157142). - Paul Barry, Nov 03 2010
For n >= 2 also row sums of A258445. - Wolfdieter Lang, Jun 27 2015

References

  • F. Disanto, A. Frosini, S. Rinaldi, Square Involutions, Proceedings of Permutation Patterns, July, 13-17 2009, Florence.
  • T. Mansour, S. Severini, Grid polygons from permutations and their enumeration by the kernel method, 19th Conference on Formal Power Series and Algebraic Combinatorics, Tianjin, China, July 2-6, 2007.

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[2^(n-1)-Binomial[n-2,Floor[(n-2)/2]],{n,2,30}]] (* Harvey P. Dale, Dec 26 2015 *)
  • PARI
    a(n) =  2^(n-1) - binomial(n-2, (n-2)\2) \\ Michel Marcus, May 27 2013

Formula

a(n) = 2^(n-1) - binomial(n-2, floor((n-2)/2)) for n>1, a(1)=1.
From Wolfdieter Lang, Jun 27 2015: (Start)
a(n) = Sum_{k = 1..2*n-3} A258445(n-1, k), n >= 2.
a(2*k+1) = 4*Sum_{j = 0..(k-2)} binomial(2*k-1,j) + 3*binomial(2*k-1,k-1), k >= 1.
a(2*k) = 4*Sum_{j = 0..(k-2)} binomial(2*(k-1),j) + binomial(2*(k-1),k-1), k >= 1. (End)
(-n+1)*a(n) + 2*(n-1)*a(n-1) + 4*(n-4)*a(n-2) + 8*(-n+4)*a(n-3) = 0. - R. J. Mathar, Aug 09 2017

A276418 Starting a random walk on Z at 0 triangle T(j,k) gives the number of paths of length 2*j returning to 0 exactly k times.

Original entry on oeis.org

1, 2, 2, 6, 6, 4, 20, 20, 16, 8, 70, 70, 60, 40, 16, 252, 252, 224, 168, 96, 32, 924, 924, 840, 672, 448, 224, 64, 3432, 3432, 3168, 2640, 1920, 1152, 512, 128, 12870, 12870, 12012, 10296, 7920, 5280, 2880, 1152, 256, 48620, 48620, 45760, 40040, 32032, 22880, 14080, 7040, 2560, 512, 184756, 184756, 175032, 155584, 128128, 96096, 64064, 36608, 16896, 5632, 1024
Offset: 0

Views

Author

Franz Vrabec, Sep 27 2016

Keywords

Comments

The number of paths of odd length 2*j+1 is the same as the number of even length 2*j (returning to 0 exactly k times).

Examples

			Triangle T(j,k) begins:
      1
      2,     2
      6,     6,     4
     20,    20,    16,     8
     70,    70,    60,    40,    16
    252,   252,   224,   168,    96,    32
    924,   924,   840,   672,   448,   224,    64
   3432,  3432,  3168,  2640,  1920,  1152,   512,  128
  12870, 12870, 12012, 10296,  7920,  5280,  2880, 1152,  256
  48620, 48620, 45760, 40040, 32032, 22880, 14080, 7040, 2560, 512
		

Programs

  • GAP
    Flat(List([0..10],j->List([0..j],k->2^k*Binomial(2*j-k,j-k)))); # Muniru A Asiru, May 18 2018

Formula

T(j,k) = (2^k)*C(2*j-k,j-k).
T(j,0) = T(j,1) for j>0.
T(j,0) = A000984(j).
T(j,1) = A000984(j) for j>0.
T(j,2) = A128650(j+1).
T(j,j) = A000079(j).
T(j,j-1) = A057711(j+1) for j>0.
Showing 1-3 of 3 results.