A136373 Primes dividing terms of A128685.
13, 79, 4057, 36037, 222379, 973597, 1310611, 2070433, 4381183, 4905427, 8145943651, 21843304081, 66988402183
Offset: 1
Crossrefs
Extensions
Edited and extended by Max Alekseyev, May 14 2010
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Select[Range[5*10^6], Mod[ 4^(#^2)+1, #^3]==0 &] (* G. C. Greubel, Jan 17 2018 *)
Select[Range[5*10^6], Mod[ 10^(#^2)+1, #^3]==0 &] (* G. C. Greubel, Jan 18 2018 *)
a(2) = A127263(3)/3 = 57/3 = 19.
a[n_] := Module[{p, k}, p = Prime[n]; k = p + 1; While[! Divisible[(p - 1)^(k p)^2 + 1, (k p)^3], k++]; k]; Table[a[n], {n, 2, 15}] (* Robert Price, Mar 23 2020 *)
Select[Range[5*10^6], Mod[ 5^(#^2)+1, #^3]==0 &] (* G. C. Greubel, Jan 18 2018 *)
Select[Range[5*10^6], Mod[ 6^(#^2)+1, #^3]==0 &] (* G. C. Greubel, Jan 18 2018 *)
Select[Range[5*10^6], Mod[ 8^(#^2)+1, #^3]==0 &] (* G. C. Greubel, Jan 18 2018 *)
Select[Range[5*10^6], Mod[ 9^(#^2)+1, #^3]==0 &] (* G. C. Greubel, Jan 18 2018 *)
Select[Range[5*10^6], Mod[ 11^(#^2)+1, #^3]==0 &] (* G. C. Greubel, Jan 18 2018 *)
Select[Range[100000], Divisible[2^(#^2) + 1, #^3] &] (* Robert Price, Mar 23 2020 *)
Comments