cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A127206 Numbers k such that k^j + (k+1)^j is prime for j = 1, 2, 4, 8.

Original entry on oeis.org

1, 765, 39269, 70260, 71399, 85764, 100079, 167789, 218229, 307020, 388449, 468945, 514760, 553400, 568904, 782595, 826284, 1160199, 1220430, 1403775, 1633020, 1714739, 1727930, 1788144, 1932900, 1958705, 2023119, 2037450, 2178804, 2185520, 2193969, 2238474, 2264774
Offset: 1

Views

Author

Zak Seidov, Mar 28 2007

Keywords

Comments

k^j + (k+1)^j is prime only for j = power of 2.
Subset of A128780 which is a subset of A068501.

Examples

			{765 + 766, 765^2 + 766^2, 765^4 + 766^4, 765^8 + 766^8} = {1531, 1171981, 686770904161, 235828747162526935093921}, all prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..3*10^6]| IsPrime(2*n+1) and IsPrime(n^2+(n+1)^2) and IsPrime(n^4+(n+1)^4) and IsPrime(n^8+(n+1)^8)]; // Vincenzo Librandi, Nov 18 2018
  • Mathematica
    Do[If[PrimeQ[2n + 1] && PrimeQ[n^2 + (n+1)^2] && PrimeQ[n^4 + (n+1)^4] && PrimeQ[n^8 + (n+1)^8], Print[n]], {n, 5*10^6}] (* Ryan Propper, Mar 30 2007 *)

Extensions

More terms from Ryan Propper, Mar 30 2007

A282997 Primes of the form (p^2 + q^2)/2 such that |q^2 - p^2| is square, where p and q are prime.

Original entry on oeis.org

17, 97, 16561, 89041, 2579199841, 3497992081, 5645806321, 21103207681, 428888025121, 686770904161, 2726023770721, 4017427557361, 6831989588161, 6933052766641, 10138513506001, 19387278797041, 23452359542401, 35287577206801, 40057354132561, 62093498771041, 64116963608881
Offset: 1

Views

Author

Thomas Ordowski and Altug Alkan, Feb 26 2017

Keywords

Comments

Primes of the form x^4 + y^4 such that q = x^2 + y^2 and p = |y^2 - x^2| are both primes.
Primes of the form n^4 + (n+1)^4 such that q = n^2 + (n+1)^2 and p = 2n+1 are both primes; so for n in A128780.
Primes of the form x^4 + y^4 such that |y^4 - x^4| is a semiprime.
From Robert G. Wilson v, Feb 26 2017: (Start)
{q, p, a(n) = (p^2+q^2)/2}
{5, 3, 17}
{13, 5, 97}
{181, 19, 16561}
{421, 29, 89041}
{71821, 379, 2579199841}
{83641, 409, 3497992081}
{106261, 461, 5645806321}
{205441, 641, 21103207681}
{926161, 1361, 428888025121}
{1171981, 1531, 686770904161}
(End)

Examples

			17 = (3^2 + 5^2)/2 and 5^2 - 3^2 = 4^2.
		

Crossrefs

Subsequence of A002645 and of A094407.

Programs

  • Mathematica
    lst = {}; a = 2; While[a < 2501, b = Mod[a, 2] + 1; While[b < a, If[ PrimeQ[a^4 + b^4] && PrimeOmega[a^4 - b^4] == 2, AppendTo[lst, (a^4 + b^4)]]; b += 2]; a++]; lst (* Robert G. Wilson v, Feb 27 2017 *)
  • PARI
    list(lim)=my(v=List(),t,n); while((t=n++^4+(n+1)^4)<=lim, if(isprime(t) && isprime(n^2+(n+1)^2) && isprime(2*n+1), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 26 2017

Formula

a(n) = A128780(n)^4 + (A128780(n)+1)^4.
a(n) == 1 (mod 16).

Extensions

a(11) onward from Robert G. Wilson v, Feb 26 2017

A281570 Numbers n such that (n+1)^k + (-n)^k is prime for each k = 2, 3, 4, 5, 7, and 8.

Original entry on oeis.org

1, 9387629, 18276717, 40036062, 252447645, 293291802, 319596455, 327091015, 401241904, 421675344, 471333967, 483656680, 1059439524, 1162179372, 1651177394, 2339341839, 2423329650, 2596829984, 2749510742, 2903809499, 2941064795, 2956438949
Offset: 1

Views

Author

Altug Alkan and Thomas Ordowski, Feb 27 2017

Keywords

Comments

For k = 6 and 9, (n+1)^k + (-n)^k is always composite (i.e. (n+1)^6 + (-n)^6 = (2*n^2+2*n+1)*(n^4+2*n^3+5*n^2+4*n+1), (n+1)^9 + (-n)^9 = (3*n^2+3*n+1)*(3*n^6+9*n^5+18*n^4+21*n^3+15*n^2+6*n+1)).

Examples

			9387629 is a term because 9387630^3 - 9387629^3, 9387630^5 - 9387629^5, 9387630^7 - 9387629^7 and 9387629^2 + 9387630^2, 9387629^4 + 9387630^4, 9387629^8 + 9387630^8 are prime numbers.
		

Crossrefs

Showing 1-3 of 3 results.