A127206
Numbers k such that k^j + (k+1)^j is prime for j = 1, 2, 4, 8.
Original entry on oeis.org
1, 765, 39269, 70260, 71399, 85764, 100079, 167789, 218229, 307020, 388449, 468945, 514760, 553400, 568904, 782595, 826284, 1160199, 1220430, 1403775, 1633020, 1714739, 1727930, 1788144, 1932900, 1958705, 2023119, 2037450, 2178804, 2185520, 2193969, 2238474, 2264774
Offset: 1
{765 + 766, 765^2 + 766^2, 765^4 + 766^4, 765^8 + 766^8} = {1531, 1171981, 686770904161, 235828747162526935093921}, all prime.
-
[n: n in [1..3*10^6]| IsPrime(2*n+1) and IsPrime(n^2+(n+1)^2) and IsPrime(n^4+(n+1)^4) and IsPrime(n^8+(n+1)^8)]; // Vincenzo Librandi, Nov 18 2018
-
Do[If[PrimeQ[2n + 1] && PrimeQ[n^2 + (n+1)^2] && PrimeQ[n^4 + (n+1)^4] && PrimeQ[n^8 + (n+1)^8], Print[n]], {n, 5*10^6}] (* Ryan Propper, Mar 30 2007 *)
A282997
Primes of the form (p^2 + q^2)/2 such that |q^2 - p^2| is square, where p and q are prime.
Original entry on oeis.org
17, 97, 16561, 89041, 2579199841, 3497992081, 5645806321, 21103207681, 428888025121, 686770904161, 2726023770721, 4017427557361, 6831989588161, 6933052766641, 10138513506001, 19387278797041, 23452359542401, 35287577206801, 40057354132561, 62093498771041, 64116963608881
Offset: 1
17 = (3^2 + 5^2)/2 and 5^2 - 3^2 = 4^2.
-
lst = {}; a = 2; While[a < 2501, b = Mod[a, 2] + 1; While[b < a, If[ PrimeQ[a^4 + b^4] && PrimeOmega[a^4 - b^4] == 2, AppendTo[lst, (a^4 + b^4)]]; b += 2]; a++]; lst (* Robert G. Wilson v, Feb 27 2017 *)
-
list(lim)=my(v=List(),t,n); while((t=n++^4+(n+1)^4)<=lim, if(isprime(t) && isprime(n^2+(n+1)^2) && isprime(2*n+1), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 26 2017
A281570
Numbers n such that (n+1)^k + (-n)^k is prime for each k = 2, 3, 4, 5, 7, and 8.
Original entry on oeis.org
1, 9387629, 18276717, 40036062, 252447645, 293291802, 319596455, 327091015, 401241904, 421675344, 471333967, 483656680, 1059439524, 1162179372, 1651177394, 2339341839, 2423329650, 2596829984, 2749510742, 2903809499, 2941064795, 2956438949
Offset: 1
9387629 is a term because 9387630^3 - 9387629^3, 9387630^5 - 9387629^5, 9387630^7 - 9387629^7 and 9387629^2 + 9387630^2, 9387629^4 + 9387630^4, 9387629^8 + 9387630^8 are prime numbers.
Showing 1-3 of 3 results.
Comments