A019293 Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (4,k)-perfect numbers.
1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 26, 32, 39, 42, 60, 65, 72, 84, 96, 160, 182, 336, 455, 512, 672, 896, 960, 992, 1023, 1280, 1536, 1848, 2040, 2688, 4092, 5472, 5920, 7808, 7936, 10416, 11934, 16352, 16380, 18720, 20384, 21824, 23424, 24564, 29127, 30240, 33792, 36720, 41440
Offset: 1
Keywords
Examples
10 is a term because applying sigma four times we see that 10 -> 18 -> 39 -> 168 -> 120, and 120 = 12*10. So 10 is a (4,12)-perfect number.
Links
- Michel Marcus, Table of n, a(n) for n = 1..320
- Graeme L. Cohen and Herman J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100.
- Michel Marcus, Unexhaustive list of terms
Programs
-
PARI
isok(n) = denominator(sigma(sigma(sigma(sigma(n))))/n) == 1; \\ Michel Marcus, Apr 29 2017
Extensions
Corrected by Michel Marcus, Apr 29 2017
Comments