A129123 Number of 4-tuples of standard tableau with height less than or equal to 2.
1, 1, 2, 17, 98, 882, 7812, 78129, 815474, 8955650, 101869508, 1194964498, 14374530436, 176681194276, 2212121332488, 28145258688369, 363177582488274, 4745064935840178, 62687665026816228, 836447728509168930, 11261240896657686660, 152847558411986548260
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..839
- F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.
Programs
-
Magma
[(&+[((n-2*j+1)/(n-j+1))^4*Binomial(n,j)^4: j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Nov 08 2022
-
Maple
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1]))) end: a:= n-> add(b(n, n-2*j)^4, j=0..n/2): seq(a(n), n=0..21); # Alois P. Heinz, Mar 25 2025
-
Mathematica
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^4, {k,0, Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Dec 16 2017 *)
-
PARI
a(n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^4);
-
Python
from math import comb def A129123(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**4 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
-
SageMath
def A129123(n): return sum(((n-2*j+1)/(n-j+1))^4*binomial(n,j)^4 for j in range((n//2)+1)) [A129123(n) for n in range(31)] # G. C. Greubel, Nov 08 2022
Formula
a(n) = Sum_{k=0..n} A120730(n,k)^4. - Philippe Deléham, Oct 18 2008
From Vaclav Kotesovec, Dec 16 2017: (Start)
Recurrence: n*(n+1)^3*(15*n^2 - 34*n + 7)*a(n) = 2*n*(90*n^5 - 309*n^4 + 147*n^3 + 124*n^2 - 135*n + 35)*a(n-1) + 4*(n-1)^2*(4*n - 5)*(4*n - 3)*(15*n^2 - 4*n - 12)*a(n-2).
a(n) ~ 3* 2^(4*n - 1/2) / (Pi^(3/2) * n^(7/2)). (End)
a(n) = Sum_{j=0..floor(n/2)} ((n-2*j+1)/(n-j+1))^4 * binomial(n,j)^4. - G. C. Greubel, Nov 08 2022
a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^3. - Seiichi Manyama, Mar 25 2025
Comments