cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129123 Number of 4-tuples of standard tableau with height less than or equal to 2.

Original entry on oeis.org

1, 1, 2, 17, 98, 882, 7812, 78129, 815474, 8955650, 101869508, 1194964498, 14374530436, 176681194276, 2212121332488, 28145258688369, 363177582488274, 4745064935840178, 62687665026816228, 836447728509168930, 11261240896657686660, 152847558411986548260
Offset: 0

Views

Author

Mike Zabrocki, Mar 29 2007

Keywords

Comments

Number of pairs of Dyck paths of semilength n with equal midpoint. - Alois P. Heinz, Oct 07 2022

Crossrefs

Programs

  • Magma
    [(&+[((n-2*j+1)/(n-j+1))^4*Binomial(n,j)^4: j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Nov 08 2022
    
  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    a:= n-> add(b(n, n-2*j)^4, j=0..n/2):
    seq(a(n), n=0..21);  # Alois P. Heinz, Mar 25 2025
  • Mathematica
    Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^4, {k,0, Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Dec 16 2017 *)
  • PARI
    a(n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^4);
    
  • Python
    from math import comb
    def A129123(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**4 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
  • SageMath
    def A129123(n): return sum(((n-2*j+1)/(n-j+1))^4*binomial(n,j)^4 for j in range((n//2)+1))
    [A129123(n) for n in range(31)] # G. C. Greubel, Nov 08 2022
    

Formula

a(n) = Sum_{k=0..n} A120730(n,k)^4. - Philippe Deléham, Oct 18 2008
From Vaclav Kotesovec, Dec 16 2017: (Start)
Recurrence: n*(n+1)^3*(15*n^2 - 34*n + 7)*a(n) = 2*n*(90*n^5 - 309*n^4 + 147*n^3 + 124*n^2 - 135*n + 35)*a(n-1) + 4*(n-1)^2*(4*n - 5)*(4*n - 3)*(15*n^2 - 4*n - 12)*a(n-2).
a(n) ~ 3* 2^(4*n - 1/2) / (Pi^(3/2) * n^(7/2)). (End)
a(n) = A357652(n) - A355481(n). - Alois P. Heinz, Oct 13 2022
a(n) = Sum_{j=0..floor(n/2)} ((n-2*j+1)/(n-j+1))^4 * binomial(n,j)^4. - G. C. Greubel, Nov 08 2022
a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^3. - Seiichi Manyama, Mar 25 2025