cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129202 Denominator of 3*(3+(-1)^n) / (n+1)^2.

Original entry on oeis.org

1, 2, 3, 8, 25, 6, 49, 32, 27, 50, 121, 24, 169, 98, 75, 128, 289, 54, 361, 200, 147, 242, 529, 96, 625, 338, 243, 392, 841, 150, 961, 512, 363, 578, 1225, 216, 1369, 722, 507, 800, 1681, 294, 1849, 968, 675, 1058, 2209, 384, 2401, 1250, 867, 1352, 2809, 486
Offset: 0

Views

Author

Paul Barry, Apr 03 2007

Keywords

Comments

A divisibility sequence, that is, if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019

Crossrefs

Cf. A026741, A051176, A129196, A129197 (numerators), A060789.

Programs

  • Magma
    [Denominator(3*(3+(-1)^n)/(n+1)^2): n in [0..50]]; // G. C. Greubel, Oct 26 2017
  • Maple
    A129202:=n->numer((n+1)/2)*numer((n+1)/3): seq(A129202(n), n=0..100); # Wesley Ivan Hurt, Jul 18 2014
  • Mathematica
    Table[Numerator[(n + 1)/2] Numerator[(n + 1)/3], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 18 2014 *)
    LinearRecurrence[{0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 1}, {1, 2, 3, 8, 25, 6, 49, 32, 27, 50, 121, 24, 169, 98, 75, 128, 289, 54}, 60] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    for(n=0,50, print1(denominator(3*(3+(-1)^n)/(n+1)^2), ", ")) \\ G. C. Greubel, Oct 26 2017
    

Formula

a(n) = A129196(n)/(n+1).
(1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*(n+1)*t)*((t-Pi)/i)^3 dt = (a(n)*Pi^2-A129203(n))/A129196(n), i=sqrt(-1).
a(n) = ( Numerator of (n+1)/2 ) * ( Numerator of (n+1)/3 ) = A026741(n+1) * A051176(n+1). - Wesley Ivan Hurt, Jul 18 2014
G.f.: -(x^16 +2*x^15 +3*x^14 +8*x^13 +25*x^12 +6*x^11 +46*x^10 +26*x^9 +18*x^8 +26*x^7 +46*x^6 +6*x^5 +25*x^4 +8*x^3 +3*x^2 +2*x +1) / ((x -1)^3*(x +1)^3*(x^2 -x +1)^3*(x^2 +x +1)^3). - Colin Barker, Jul 18 2014
a(n+18) = 3*a(n+12)-3*a(n+6)+a(n). - Robert Israel, Jul 18 2014
a(n) = 2*(n+1)^2 * (7-4*cos(2*Pi*(n+1)/3)) / (9*(3-(-1)^n)). - Vaclav Kotesovec, Jul 20 2014
From Peter Bala, Feb 27 2019: (Start)
The following remarks assume an offset of 1.
a(n) = n^2/gcd(n,6) = n*A060789(n).
a(n) = n^2/b(n), where b(n) is the purely periodic sequence [1,2,3,2,1,6,...] with period 6. Thus a(n) is a quasi-polynomial in n:
a(6*n+1) = (6*n + 1)^2;
a(6*n+2) = 2*(3*n + 1)^2;
a(6*n+3) = 3*(2*n + 1)^2;
a(6*n+4) = 2*(3*n + 2)^2;
a(6*n+5) = (6*n + 5)^2;
a(6*n) = 6*n^2.
O.g.f.: F(x) - 2*F(x^2) - 6*F(x^3) + 12*F(x^6), where F(x) = x*(1 + x)/(1 - x)^3 is the generating function for the squares. (End)
Sum_{n>=0} 1/a(n) = 55*Pi^2/216. - Amiram Eldar, Sep 27 2022

Extensions

More terms from Wesley Ivan Hurt, Jul 18 2014