cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129289 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+73)^2 = y^2.

Original entry on oeis.org

0, 44, 95, 219, 455, 744, 1460, 2832, 4515, 8687, 16683, 26492, 50808, 97412, 154583, 296307, 567935, 901152, 1727180, 3310344, 5252475, 10066919, 19294275, 30613844, 58674480, 112455452, 178430735, 341980107, 655438583, 1039970712, 1993206308, 3820176192
Offset: 1

Views

Author

Mohamed Bouhamida, May 26 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+73, y).
Corresponding values y of solutions (x, y) are in A160041.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (89+36*sqrt(2))/73 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (5907+1802*sqrt(2))/73^2 for n mod 3 = 0.

Crossrefs

Cf. A160041, A129288, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A160042 (decimal expansion of (89+36*sqrt(2))/73), A160043 (decimal expansion of (5907+1802*sqrt(2))/73^2).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(44+51*x+124*x^2-28*x^3-17*x^4-28*x^5)/((1-x)*(1-6*x^3+x^6)))); // G. C. Greubel, May 07 2018
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+73)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,44,95,219,455,744,1460},70] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    {forstep(n=0, 100000000, [3 ,1], if(issquare(2*n^2+146*n+5329), print1(n, ",")))}
    

Formula

a(n) = 6*a(n-3) -a(n-6) +146 for n > 6; a(1)=0, a(2)=44, a(3)=95, a(4)=219, a(5)=455, a(6)=744.
G.f.: x*(44+51*x+124*x^2-28*x^3-17*x^4-28*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 73*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, May 04 2009