cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129298 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+89)^2 = y^2.

Original entry on oeis.org

0, 51, 120, 267, 540, 931, 1780, 3367, 5644, 10591, 19840, 33111, 61944, 115851, 193200, 361251, 675444, 1126267, 2105740, 3936991, 6564580, 12273367, 22946680, 38261391, 71534640, 133743267, 223003944, 416934651, 779513100, 1299762451
Offset: 1

Views

Author

Mohamed Bouhamida, May 26 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+89, y).
Corresponding values y of solutions (x, y) are in A160055.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (107+42*sqrt(2))/89 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (8979+2990*sqrt(2))/89^2 for n mod 3 = 0.

Crossrefs

Cf. A160055, A129289, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A160056 (decimal expansion of (107+42*sqrt(2))/89), A160057 (decimal expansion of (8979+2990*sqrt(2))/89^2).

Programs

  • Magma
    I:=[0,51,120,267,540,931,1780]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,51,120,267,540,931,1780},30] (* Harvey P. Dale, Sep 21 2013 *)
  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+178*n+7921), print1(n, ",")))};
    
  • PARI
    x='x+O('x^30); concat(0, Vec(x*(51+69*x+147*x^2-33*x^3-23*x^4-33*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, Apr 19 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 178 with for n > 6; a(1)=0, a(2)=51, a(3)=120, a(4)=267, a(5)=540, a(6)=931.
G.f.: x*(51+69*x+147*x^2-33*x^3-23*x^4-33*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 89*A001652(k), k >= 0. (Zak Seidov, May 28 2007)
a(1)=0, a(2)=51, a(3)=120, a(4)=267, a(5)=540, a(6)=931, a(7)=1780, a(n) = a(n-1) + 6*a(n-3) - 6*a(n-4) - a(n-6) + a(n-7). - Harvey P. Dale, Sep 21 2013

Extensions

Edited and three terms added by Klaus Brockhaus, May 04 2009