A129389 Numbers k such that the mean of 5 consecutive squares starting with k^2 is prime.
1, 7, 13, 19, 31, 37, 43, 55, 79, 97, 103, 109, 115, 121, 145, 169, 217, 223, 235, 241, 247, 253, 271, 295, 301, 307, 319, 343, 349, 361, 367, 373, 385, 415, 421, 427, 439, 445, 451, 475, 499, 511, 547, 553, 559, 571, 601, 607, 649, 673, 679, 697, 709, 751
Offset: 1
Keywords
Examples
(1^2 + ... + 5^2)/5 = 11, which is prime; (7^2 + ... + 11^2)/5 = 83, which is prime; (13^2 + ... + 17^2)/5 = 227, which is prime.
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[n: n in [1..800] | IsPrime(n^2+4*n+6)]; /* or, from the second comment: */ A000217:=func; [n: n in [1..800] | IsPrime(A000217(n)+A000217(n+3))]; // Bruno Berselli, Apr 17 2013
-
Mathematica
Select[Range[800], PrimeQ[#^2 + 4 # + 6] &] (* Bruno Berselli, Apr 17 2012 *)
-
SageMath
[n for n in (1..1000) if is_prime(n^2+4*n+6)] # G. C. Greubel, Feb 04 2024
Comments