cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098062 Primes of the form n^2 + 4n + 8.

Original entry on oeis.org

13, 29, 53, 173, 229, 293, 733, 1093, 1229, 1373, 2029, 2213, 3253, 4229, 4493, 5333, 7229, 7573, 9029, 9413, 10613, 13229, 13693, 15629, 18229, 18773, 21613, 24029, 26573, 27893, 31333, 33493, 37253, 41213, 42853, 46229, 47093, 54293, 55229
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 12 2004

Keywords

Comments

Or, primes that are equal to the mean of 7 consecutive squares. - Zak Seidov, Apr 14 2007
Sum of 7 consecutive squares starting with m^2 is equal to 7*(13 + 6*m + m^2) and mean is (13 + 6*m + m^2)=(m+3)^2+4. Hence a(n)=A005473(n+1). Note that only nonnegative m's are considered. - Zak Seidov, Apr 14 2007
a(n)==1 (mod 4).
a(n)= A005473(n+1). - Zak Seidov, Apr 12 2007

Examples

			13 = (0^2 + ... + 6^2)/7, 29 = (2^2 + ... + 8^2)/7 = 29, 53 = (4^2 + ... + 10^2)/7 = 53.
		

Crossrefs

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is n^2 + 4*n + 8]; // Vincenzo Librandi, Jul 17 2012
  • Mathematica
    Select[ Table[ n^2 + 4n + 8, {n, 240}], PrimeQ[ # ] &] (* Robert G. Wilson v, Sep 14 2004 *)
  • PARI
    for(n=0,240,if(isprime(p=n^2+4*n+8),print1(p,","))) \\ Klaus Brockhaus
    

Extensions

Edited, corrected and extended by Robert G. Wilson v and Klaus Brockhaus, Sep 14 2004
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar

A129388 Primes that are equal to the mean of 5 consecutive squares.

Original entry on oeis.org

11, 83, 227, 443, 1091, 1523, 2027, 3251, 6563, 9803, 11027, 12323, 13691, 15131, 21611, 29243, 47963, 50627, 56171, 59051, 62003, 65027, 74531, 88211, 91811, 95483, 103043, 119027, 123203, 131771, 136163, 140627, 149771, 173891, 178931
Offset: 1

Views

Author

Zak Seidov, Apr 12 2007

Keywords

Comments

The sum of 5 consecutive squares starting with k^2 is equal to 5*(6 + 4*k + k^2) and the mean is (6 + 4*k + k^2) = (k+2)^2 + 2. Hence a(n)= A056899(n+2).

Examples

			11 = (1^2 + ... + 5^2)/5;
83 = (7^2 + ... + 11^2)/5;
227 = (13^2 + ... + 17^2)/5.
		

Crossrefs

Programs

  • Magma
    [a: n in [1..600] | IsPrime(a) where a is  n^2 + 2*n + 3 ]; // Vincenzo Librandi, Mar 22 2013
    
  • Mathematica
    Select[Table[n^2 + 2 n + 3, {n, 1, 600}], PrimeQ] (* Vincenzo Librandi, Mar 22 2013 *)
  • SageMath
    A102305=[n^2+2*n+3 for n in range(1,1001)]
    [n^2+2*n+3 for n in (1..600) if is_prime(A102305[n-1])] # G. C. Greubel, Feb 03 2024

A129412 Numbers k such that mean of 7 consecutive squares starting with k^2 is prime.

Original entry on oeis.org

0, 2, 4, 10, 12, 14, 24, 30, 32, 34, 42, 44, 54, 62, 64, 70, 82, 84, 92, 94, 100, 112, 114, 122, 132, 134, 144, 152, 160, 164, 174, 180, 190, 200, 204, 212, 214, 230, 232, 240, 242, 250, 252, 262, 264, 272, 274, 284, 290, 300, 304, 310, 314, 344, 354, 370, 372
Offset: 1

Views

Author

Zak Seidov, Apr 14 2007

Keywords

Comments

Sum of 7 consecutive squares starting with k^2 is equal to 7*(13 + 6*k + k^2) and mean is (13 + 6*k + k^2) = (k+3)^2+4. Hence a(n) = A007591(n+1)-3.

Examples

			(0^2+...+6^2)/7=13 prime, (2^2+...+8^2)/7=29 prime, (4^2+...+10^2)/7=53 prime.
		

Crossrefs

Programs

Showing 1-3 of 3 results.