A129454 a(n) = Product{i=1..n-1} Product{j=1..n-1} Product{k=1..n-1} gcd(i,j,k).
1, 1, 1, 2, 6, 1536, 7680, 8806025134080, 61642175938560, 2168841254587541957294161920, 7562281854741110985626291951024209920, 1362299589723309231779453337910253309054734620740812800000000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..26
Programs
-
Magma
A129454:= func< n | n le 1 select 1 else (&*[(&*[(&*[GCD(GCD(j,k),m): k in [1..n-1]]): j in [1..n-1]]): m in [1..n-1]]) >; [A129454(n): n in [0..20]]; // G. C. Greubel, Feb 07 2024
-
Mathematica
A129454[n_]:= Product[GCD[j,k,m], {j,n-1}, {k,n-1}, {m,n-1}]; Table[A129454[n], {n,0,20}] (* G. C. Greubel, Feb 07 2024 *)
-
SageMath
def A129454(n): return product(product(product(gcd(gcd(j,k),m) for k in range(1,n)) for j in range(1,n)) for m in range(1,n)) [A129454(n) for n in range(21)] # G. C. Greubel, Feb 07 2024
Formula
a(n) = Product{i=1..n-1} Product{j=1..n-1} Product{k=1..n-1} gcd(i,j,k), for n > 2, otherwise a(n) = 1.
Comments