A129489 Least k>1 such that binomial(2k,k) is not divisible by any of the first n odd primes.
3, 10, 10, 3160
Offset: 1
Examples
For n=1, binomial(6,3)=20, which is not divisible by 3. For n=2 and n=3, binomial(20,10)=184756 is not divisible by 3, 5 and 7. For n=4, binomial(6320,3160), a 1901-digit number, is not divisible by 3, 5, 7 and 11.
Links
- P. Erdős, R. L. Graham, I. Z. Russa and E. G. Straus, On the prime factors of C(2n,n), Math. Comp. 29 (1975), 83-92.
- Eric Weisstein's World of Mathematics, Lucas Correspondence Theorem
Programs
-
Mathematica
Table[k = 2; While[AnyTrue[Prime@ Range[2, n + 1], Divisible[Binomial[2 k, k], #] &], k++]; k, {n, 4}] (* Michael De Vlieger, Jan 27 2016, Version 10 *)
-
PARI
isok(kk, n) = {for (j=2, n+1, if (kk % prime(j) == 0, return (0));); return (1);} a(n) = {my(k = 2); while (! isok(binomial(2*k,k), n), k++); k;} \\ Michel Marcus, Jan 11 2016
Formula
a(n) <= A266366(n+1) for n > 0. - Jonathan Sondow, Jan 27 2016
Comments