A030979 Numbers k such that binomial(2k,k) is not divisible by 3, 5 or 7.
0, 1, 10, 756, 757, 3160, 3186, 3187, 3250, 7560, 7561, 7651, 20007, 59548377, 59548401, 45773612811, 45775397187, 237617431723407, 24991943420078301, 24991943420078302, 24991943420078307, 24991943715007536, 24991943715007537
Offset: 1
Keywords
References
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33.
Links
- Christopher E. Thompson, Table of n, a(n) for n = 1..1374 (complete up to 10^70, extends first 62 terms computed by Max Alekseyev).
- Christian Ballot, Divisibility of the middle Lucasnomial coefficient, Fib. Q., 55 (2017), 297-308.
- Ernie Croot, Hamed Mousavi and Maxie Schmidt, On a conjecture of Graham on the p-divisibility of central binomial coefficients, arXiv:2201.11274 [math.NT], 2022.
- P. Erdős, R. L. Graham, I. Z. Russa and E. G. Straus, On the prime factors of C(2n,n), Math. Comp. 29 (1975), 83-92, doi:10.2307/2005464.
- Gennady Eremin, Factoring Middle Binomial Coefficients, arXiv:2003.01494 [math.CO], 2020.
- R. D. Mauldin and S. M. Ulam, Mathematical problems and games, Adv. Appl. Math. 8 (3) (1987) 281-344.
- C. Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly, 112 (2015), 636-644.
- Wikipedia, Lucas' theorem
- Han Yu, Fractal projections with an application in number theory, arXiv:2004.05924 [math.NT], 2020.
Programs
-
Mathematica
lim=10000; Intersection[Table[FromDigits[IntegerDigits[k,2],3], {k,0,lim}], Table[FromDigits[IntegerDigits[k,3],5], {k,0,lim}], Table[FromDigits[IntegerDigits[k,4],7], {k,0,lim}]] (* T. D. Noe, Apr 18 2007 *)
-
PARI
fval(n,p)=my(s);while(n\=p,s+=n);s is(n)=fval(2*n,3)==2*fval(n,3) && fval(2*n,5)==2*fval(n,5) && fval(2*n,7)==2*fval(n,7) \\ Charles R Greathouse IV, Oct 09 2015
Extensions
More terms from Naohiro Nomoto, May 06 2002
Additional comments from R. L. Graham, Apr 25 2007
Additional comments and terms up 3^41 in b-file from Max Alekseyev, Nov 23 2008
Additional terms up to 10^70 in b-file from Christopher E. Thompson, Nov 06 2015
Comments