cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A129508 Numbers k such that 3 and 5 do not divide binomial(2*k, k).

Original entry on oeis.org

0, 1, 10, 12, 27, 30, 31, 36, 37, 252, 255, 256, 280, 282, 756, 757, 760, 810, 811, 3160, 3162, 3186, 3187, 3250, 3252, 3276, 3277, 3280, 6561, 6562, 6885, 6886, 6912, 6925, 7536, 7537, 7560, 7561, 7626, 7627, 7650, 7651, 19686, 19687, 20007, 20010, 20011
Offset: 1

Views

Author

T. D. Noe, Apr 18 2007

Keywords

Comments

The Erdos paper proves that for any two odd primes p and q, there are an infinite number of k for which gcd(p*q, binomial(2*k, k)) = 1; i.e., p and q do not divide binomial(2*k, k).

Crossrefs

Cf. A030979 (k such that 3, 5 and 7 do not divide binomial(2*k, k)).

Programs

  • Mathematica
    lim=10000; Intersection[Table[FromDigits[IntegerDigits[k,2],3], {k,0,lim}], Table[FromDigits[IntegerDigits[k,3],5], {k,0,lim}]]
  • PARI
    valp(n, p)=my(s); while(n\=p, s+=n); s
    is(n)=valp(2*n, 3)==2*valp(n, 3) && valp(2*n, 5)==2*valp(n, 5) \\ Charles R Greathouse IV, Feb 03 2016

Formula

Intersection of A005836 and A037453.

A129488 Smallest odd prime dividing binomial(2n,n).

Original entry on oeis.org

3, 5, 5, 3, 3, 3, 3, 5, 11, 3, 7, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 7, 5, 3, 7, 7, 3, 3, 3, 3, 7, 7, 3, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 3, 5, 5, 3, 3, 3, 3, 5, 5, 3, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 2

Views

Author

T. D. Noe, Apr 17 2007

Keywords

Comments

The Erdős paper calls this function g(n) and states that it is not known whether it is bounded. Currently, g(3160)=13 is the greatest known value of g. See A129489.

Crossrefs

Cf. A030979 (n such that g(n)>=11), A129489, A266366.

Programs

  • Mathematica
    Table[Transpose[FactorInteger[Binomial[2n,n]]][[1,2]], {n,2,150}]
  • PARI
    a(n)=my(k);forprime(p=3,default(primelimit),k=1;while((k*=p)<=2*n,if(n/k-n\k>1/2,return(p)))) \\ Charles R Greathouse IV, Dec 19 2011

A129489 Least k>1 such that binomial(2k,k) is not divisible by any of the first n odd primes.

Original entry on oeis.org

3, 10, 10, 3160
Offset: 1

Views

Author

T. D. Noe, Apr 17 2007

Keywords

Comments

The Erdős paper states that it is not known whether the smallest odd prime factor, called g(n), of binomial(2n,n) is bounded. See A129488 for the function g(n). Lucas' Theorem for binomial coefficients can be used to quickly determine whether a prime p divides binomial(2n,n) without computing the binomial coefficient. It is probably a coincidence that 3, 10 and 3160 are all triangular numbers.
Extensive calculations show that if a(5) exists, it is either an integer greater than 13^12 or if it is a triangular number then it is greater than 2^63. [Comment modified by Robert Israel, Jan 27 2016]

Examples

			For n=1, binomial(6,3)=20, which is not divisible by 3.
For n=2 and n=3, binomial(20,10)=184756 is not divisible by 3, 5 and 7.
For n=4, binomial(6320,3160), a 1901-digit number, is not divisible by 3, 5, 7 and 11.
		

Crossrefs

Cf. A000984, A129488, A030979 (n such that g(n)>=11), A266366, A267823.

Programs

  • Mathematica
    Table[k = 2; While[AnyTrue[Prime@ Range[2, n + 1], Divisible[Binomial[2 k, k], #] &], k++]; k, {n, 4}] (* Michael De Vlieger, Jan 27 2016, Version 10 *)
  • PARI
    isok(kk, n) = {for (j=2, n+1, if (kk % prime(j) == 0, return (0));); return (1);}
    a(n) = {my(k = 2); while (! isok(binomial(2*k,k), n), k++); k;} \\ Michel Marcus, Jan 11 2016

Formula

a(n) <= A266366(n+1) for n > 0. - Jonathan Sondow, Jan 27 2016

A196747 Numbers n such that 3 does not divide swing(n) = A056040(n).

Original entry on oeis.org

0, 1, 2, 6, 7, 8, 18, 19, 20, 24, 25, 26, 54, 55, 56, 60, 61, 62, 72, 73, 74, 78, 79, 80, 162, 163, 164, 168, 169, 170, 180, 181, 182, 186, 187, 188, 216, 217, 218, 222, 223, 224, 234, 235, 236, 240, 241, 242, 486, 487, 488, 492, 493, 494, 504, 505, 506, 510
Offset: 1

Views

Author

Peter Luschny, Oct 06 2011

Keywords

Crossrefs

Programs

  • Maple
    SwingExp := proc(m,n) local p, q; p := m;
    do q := iquo(n,p);
       if (q mod 2) = 1 then RETURN(1) fi;
       if q = 0 then RETURN(0) fi;
       p := p * m;
    od end:
    Search := proc(n,L) local m, i, r; m := n;
    for i in L do r := SwingExp(i,m);
       if r <> 0 then RETURN(NULL) fi
    od; n end:
    A196747_list := n -> Search(n,[3]):  # n is a search limit
  • Mathematica
    (* A naive solution *) sf[n_] := n!/Quotient[n, 2]!^2; Select[Range[0, 600], ! Divisible[sf[#], 3] &] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    is(n)=my(t=valp(n,3)); t%2==0 && 2*valp(n\2,3)==t \\ Charles R Greathouse IV, Feb 02 2016

A196748 Numbers n such that 3 and 5 do not divide swing(n) = A056040(n).

Original entry on oeis.org

0, 1, 2, 20, 24, 54, 60, 61, 62, 72, 73, 74, 504, 510, 511, 512, 560, 564, 1512, 1513, 1514, 1520, 1620, 1621, 1622, 6320, 6324, 6372, 6373, 6374, 6500, 6504, 6552, 6553, 6554, 6560, 13122, 13123, 13124, 13770, 13771, 13772, 13824, 13850, 15072, 15073, 15074
Offset: 1

Views

Author

Peter Luschny, Oct 06 2011

Keywords

Crossrefs

Programs

  • Maple
    # The function Search is defined in A196747.
    A196748_list := n -> Search(n,[3,5]):  # n is a search limit
  • Mathematica
    (* A naive solution *) sf[n_] := n!/Quotient[n, 2]!^2; Select[Range[0, 16000], !Divisible[sf[#], 3] && !Divisible[sf[#], 5] &] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    is(n)=valp(n,3)==2*valp(n\2,3) && valp(n,5)==2*valp(n\2,5) \\ Charles R Greathouse IV, Feb 02 2016

A196749 Numbers n such that 3, 5 and 7 do not divide swing(n) = A056040(n).

Original entry on oeis.org

0, 1, 2, 20, 1512, 1513, 1514, 6320, 6372, 6373, 6374, 6500, 15120, 15121, 15122, 15302, 40014, 119096754, 119096802, 91547225622, 91550794374
Offset: 1

Views

Author

Peter Luschny, Oct 06 2011

Keywords

Crossrefs

Programs

  • Maple
    # The function Search is defined in A196747.
    A196749_list := n -> Search(n,[3,5,7]):  # n is a search limit
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    is(n)=valp(n,3)==2*valp(n\2,3) && valp(n,5)==2*valp(n\2,5) && valp(n,7)==2*valp(n\2,7) \\ Charles R Greathouse IV, Feb 02 2016

A196750 Numbers n such that 3, 5, 7 and 11 do not divide swing(n) = A056040(n).

Original entry on oeis.org

0, 1, 2, 6320
Offset: 1

Views

Author

Peter Luschny, Oct 06 2011

Keywords

Comments

It is conjectured that there are no other terms.

Crossrefs

Programs

  • Maple
    # The function Search is defined in A196747.
    A196750_list := n -> Search(n,[3,5,7,11]):  # n is a search limit
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    is(n)=valp(n,3)==2*valp(n\2,3) && valp(n,5)==2*valp(n\2,5) && valp(n,7)==2*valp(n\2,7) && valp(n,11)==2*valp(n\2,11) \\ Charles R Greathouse IV, Feb 02 2016

A266366 Least k such that prime(n) is the smallest odd prime factor of C(2k,k).

Original entry on oeis.org

2, 3, 12, 10, 3160
Offset: 2

Views

Author

Jonathan Sondow, Jan 18 2016

Keywords

Comments

If n>0, then a(n+2) >= A129489(n) = least k>1 such that binomial(2k,k) is not divisible by any of the first n odd primes.
It is not known whether any more terms exist. See A129489 for bounds, comments and references.

Examples

			C(2,1) = 2, C(4,2) = 6 = 2 * 3, C(6,3) = 20 = 2^2 * 5, and 3 = prime(2), 5 = prime(3), so a(2) = 2 and a(3) = 3.
		

Crossrefs

Programs

  • PARI
    valp(n, p)=my(s); while(n\=p, s+=n); s
    a(n)=my(q=prime(n),k=1); while(k++, forprime(p=3,q-1, if(valp(2*k, p)>2*valp(k, p), next(2))); if(valp(2*k, q)>2*valp(k, q), return(k))) \\ Charles R Greathouse IV, Feb 03 2016

A373469 Least odd k such that C(2k, k) == 1 (mod A007775(n)), or 0 if no such k exists.

Original entry on oeis.org

1, 17, 13, 2383, 37, 3, 3391, 185, 129, 419, 95, 139, 7, 7373, 497, 21, 89, 27, 319, 7, 23, 191, 277, 25, 33635, 137, 1957, 347, 879, 889, 47, 57, 411, 263, 63, 57, 63, 143, 62561, 363, 1679, 861, 285735, 1017, 545, 2605, 913, 1873, 735, 206349, 817, 407, 485, 49, 7605, 179817
Offset: 1

Views

Author

M. F. Hasler, Jul 12 2024

Keywords

Comments

A007775 lists the odd numbers not divisible by 3 or 5. It seemed that these are exactly the odd numbers not in A086748 (= odd m such that C(2k,k) == 1 (mod m) has no odd solution k), i.e., the numbers in A086748 would exactly be the odd multiples of 3 and 5, but so far there was no proof or disproof for that. The present sequence gives an explicit proof, if it exists, for each x in A007775, that x is not in A086748.
It is highly possible that a(n) = 0 for n with m = A007775(n) divisible by three or more distinct primes, in which case values of k such that C(2k,k) coprime to m, let alone C(2k,k) == 1 (mod m), are very sparse and possibly finite. See A030979 for a similar problem. - Max Alekseyev, Jul 14 2024
Examples for moduli that have 3 distinct prime factors >5: a(603) = 57 associated with modulus A007775(603) = 2261 = 7*17*19. a(4333) = 23 associated with modulus A007775(4333) = 16247 = 7*11*211. a(6621) = 1709 associated with 11*37*61. a(6797)=19999 assocated with 7*11*331. - R. J. Mathar, Aug 09 2024

Crossrefs

Cf. A007775 (odd numbers not divisible by 3 or 5), A086748 (odd m such that C(2k,k)==1 (mod m) has no odd solution k).
Cf. A030979.

Programs

  • PARI
    /* helper function: compute C(n,k) mod prime p */
    LucasT(n,k,p)={if(n>=k, my(kp = digits(k,p), np = digits(n,p)[-#kp..-1]); prod(i=1, #kp, binomial(np[i], kp[i]), Mod(1,p)))}
    is1(k,f)={for(i=1,matsize(f)[1], LucasT(2*k, k, f[i,1])==1||return); vecmax(f[,2])==1 || binomial(2*k,k)%factorback(f)==1}
    apply( {A373469(n, m=A007775(n), f=factor(m))=!f || forstep(k=3, oo, 2, is1(k,f) && return(k))}, [1..50])

Extensions

a(43)-a(56) from Max Alekseyev, Jul 12 2024

A295562 List of numbers whose middle Fibonomial coefficient (2n,n)_F is prime to 105.

Original entry on oeis.org

1, 1312, 3256, 3257, 3936, 3937, 4000, 4001, 4032, 38880, 38881, 39000, 39001, 19928280, 19928281, 21975136, 21975137, 21975305, 21975312, 22054032
Offset: 1

Views

Author

N. J. A. Sloane, Nov 28 2017

Keywords

Comments

From Charlie Neder, Mar 04 2019: (Start)
For the middle Fibonomial coefficient (2n,n)_F to be coprime to a prime p, we must have that the integral part of n/A001177(p) has its base-p digits all < p/2 and its fractional part is < 1/2.
Next term > 10^8. (End)

Crossrefs

Formula

Numbers k congruent to 0 or 1 modulo 8 such that floor(k/4) is in A005836, k is in A037543, and floor(k/8) is in A037461. - Charlie Neder, Mar 04 2019

Extensions

a(10)-a(20) from Charlie Neder, Mar 04 2019
Showing 1-10 of 10 results.