cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129652 Exponential Riordan array [e^(x/(1-x)),x].

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 13, 9, 3, 1, 73, 52, 18, 4, 1, 501, 365, 130, 30, 5, 1, 4051, 3006, 1095, 260, 45, 6, 1, 37633, 28357, 10521, 2555, 455, 63, 7, 1, 394353, 301064, 113428, 28056, 5110, 728, 84, 8, 1, 4596553, 3549177, 1354788, 340284, 63126, 9198, 1092, 108, 9, 1
Offset: 0

Views

Author

Paul Barry, Apr 26 2007

Keywords

Comments

Satisfies the equation e^[x/(1-x),x] = e*[e^(x/(1-x)),x].
Row sums are A052844.
Antidiagonal sums are A129653.

Examples

			Triangle begins:
     1;
     1,    1;
     3,    2,    1;
    13,    9,    3,   1;
    73,   52,   18,   4,  1;
   501,  365,  130,  30,  5, 1;
  4051, 3006, 1095, 260, 45, 6, 1;
  ...
		

Crossrefs

Cf. A000262 (column 0), A052844 (row sums).
T(2n,n) gives A350461.

Programs

  • Maple
    A129652 := (n, k) -> (-1)^(k-n+1)*binomial(n,k)*KummerU(k-n+1, 2, -1);
    seq(seq(round(evalf(A129652(n,k),99)),k=0..n),n=0..9); # Peter Luschny, Sep 17 2014
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, [1$2], add((p-> p+
         [0, p[1]*x^j])(b(n-j)*binomial(n-1, j-1)*j!), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)/i!, i=0..n))(b(n)[2]):
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 21 2022
  • Mathematica
    T[n_, k_] := If[k==n, 1, n!/k! Sum[Binomial[n-k-1, j]/(j+1)!, {j, 0, n-k-1}]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 14 2019 *)

Formula

Number triangle T(n,k)=(n!/k!)*sum{i=0..n-k, C(n-k-1,i)/(n-k-i)!}
From Peter Bala, May 14 2012 : (Start)
Array is exp(S*(I-S)^(-1)) where S is A132440 the infinitesimal generator for Pascal's triangle.
Column 0 is A000262.
T(n,k) = binomial(n,k)*A000262(n-k).
So T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then arrange the remaining n-k elements into a set of lists. (End)
T(n,k) = (-1)^(k-n+1)*C(n,k)*KummerU(k-n+1, 2, -1). - Peter Luschny, Sep 17 2014
From Tom Copeland, Mar 11 2016: (Start)
The row polynomials P_n(x) form an Appell sequence with e.g.f. e^(t*P.(x)) = e^[t / (1-t)] e^(x*t), so the lowering and raising operators are L = d/dx = D and the R = x + 1 / (1-D)^2 = x + 1 + 2 D + 3 D^2 + ..., satisfying L P_n(x) = n * P_(n-1)(x) and R P_n(x) = P_(n+1)(x).
(P.(x) + y)^n = Sum_{k=0..n} binomial(n,k) P_k(x) * y^(n-k) = P_n(x+y).
The Appell polynomial umbral compositional inverse sequence has the e.g.f. e^(t*Q.(x)) = e^[-t / (1-t)] e^(x*t) (see A111884 and A133314), so Q_n(P.(x)) = P_n(Q.(x)) = x^n. The lower triangular matrices for the coefficients of these two Appell sequences are a multiplicative inverse pair.
(End)
Sum_{k=0..n} (-1)^k * T(n,k) = A052845(n). - Alois P. Heinz, Feb 21 2022