cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A133289 Riordan matrix T from A084358 (lists of sets of lists) inverse to the Riordan matrix TI = 2I-A129652 formed from A000262 (number of sets of lists) and reciprocal under a partition transform.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 37, 15, 3, 1, 363, 148, 30, 4, 1, 4441, 1815, 370, 50, 5, 1, 65133, 26646, 5445, 740, 75, 6, 1, 1114009, 455931, 93261, 12705, 1295, 105, 7, 1, 21771851, 8912072, 1823724, 248696, 25410, 2072, 140, 8, 1
Offset: 0

Views

Author

Tom Copeland, Oct 16 2007, Nov 30 2007

Keywords

Comments

T(n,k) is simply constructed from Pascal's triangle PT and A084358 through multiplication along the diagonals. Taking the matrix inverse gives TI = 2I-A129652 = PT times diagonal multiplication by -A000262 with the sign of the first term flipped to positive.
T and TI are also reciprocals under the list partition transform described in A133314.

Examples

			Triangle starts:
1,
1, 1,
5, 2, 1,
37, 15, 3, 1,
363, 148, 30, 4, 1,
4441, 1815, 370, 50, 5, 1,
...
		

Crossrefs

Cf. A131202.

Programs

  • Mathematica
    max = 7; s = Series[Exp[x*t]/(2-Exp[x/(1-x)]), {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]*n!; t[0, 0] = 1; Table[t[n, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)

Formula

T(n,k) = binomial(n,k) * A084358(n-k).
E.g.f.: exp(xt) / { 2 - exp[x/(1-x)] }.

A129653 Antidiagonal sums of number triangle A129652.

Original entry on oeis.org

1, 1, 4, 15, 83, 556, 4435, 40773, 423836, 4908403, 62606297, 871421976, 13136605577, 213122669141, 3701085673676, 68480774296803, 1344611320542931, 27917413103561540, 611000785570868627, 14056645627856206809, 339081826905338009620, 8557085279980716462407
Offset: 0

Views

Author

Paul Barry, Apr 26 2007

Keywords

Crossrefs

Cf. A129652.

Programs

  • PARI
    a(n) = sum(k=0, n\2, ((n-k)!/k!)*sum(i=0, n-2*k, binomial(n-2*k-1,i)/(n-2*k-i)!)); \\ Michel Marcus, Sep 10 2015

Formula

a(n) = Sum_{k=0..floor(n/2)} (((n-k)!/k!)*sum{i=0..n-2k} C(n-2k-1,i)/(n-2k-i)!).

A052845 Expansion of e.g.f.: exp(x^2/(1-x)).

Original entry on oeis.org

1, 0, 2, 6, 36, 240, 1920, 17640, 183120, 2116800, 26943840, 374220000, 5628934080, 91122071040, 1579034096640, 29155689763200, 571308920582400, 11838533804697600, 258608278645516800, 5938673374272038400, 143003892952893772800, 3602735624977961472000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of partitions of {1,..,n} into any number of lists of size >1, where a list means an ordered subset, cf. A000262. - Vladeta Jovovic, Vladimir Baltic, Oct 29 2002

Crossrefs

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Prod(Z,B),S= Set(C,1 <= card)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x^2/(1-x)],{x,0,nn}], x] Range[ 0,nn]!] (* Harvey P. Dale, May 31 2012 *)
  • PARI
    N=33;  x='x+O('x^N);
    egf=exp(x^2/(1-x));
    Vec(serlaplace(egf))
    /* Joerg Arndt, Sep 15 2012 */

Formula

D-finite with recurrence: a(0)=1, a(1)=0, a(2)=2, (n^2+3*n+2)*a(n)+(n^2+n-2)*a(n+1)+(-4-2*n)*a(n+2)+a(n+3)=0.
Inverse binomial transform of A000262: Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A000262(k). - Vladeta Jovovic, Vladimir Baltic, Oct 29 2002
a(n) ~ n^(n-1/4)*exp(-3/2+2*sqrt(n)-n)/sqrt(2) * (1 + 43/(48*sqrt(n))). - Vaclav Kotesovec, Jun 24 2013, extended Dec 01 2021
E.g.f.: E(0) - 1, where E(k) = 2 + x^2/((2*k+1)*(1-x) - x^2/E(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Dec 30 2013
E.g.f.: Product_{k>1} exp(x^k). - Seiichi Manyama, Sep 29 2017
a(0) = 1; a(n) = Sum_{k=2..n} binomial(n-1,k-1) * k! * a(n-k). - Ilya Gutkovskiy, Feb 09 2020
a(n) = Sum_{k=0..n} (-1)^k * A129652(n,k). - Alois P. Heinz, Feb 21 2022

Extensions

Initial term changed to a(0) = 1, Apr 24 2005

A131758 Coefficients of numerators of rational functions whose binomial transforms give the normalized polylogarithms Li(-n,t)/n!.

Original entry on oeis.org

1, 0, 1, -1, 1, 2, 4, -14, 10, 6, -15, 83, -157, 89, 24, 56, -424, 1266, -1724, 826, 120, -185, 1887, -8038, 17642, -19593, 8287, 720, 204, -4976, 36226, -126944, 239576, -234688, 90602, 5040
Offset: 0

Views

Author

Tom Copeland, Sep 17 2007, Sep 27 2007, Sep 30 2007, Oct 01 2007, Oct 08 2007

Keywords

Comments

Coefficients may be generated from a modified Riordan array (MRA) formed from Rgf(z,t) = (t/(1+z))/(exp(-z/(1+z))-t) with each row of the array acting to generate the succeeding polynomial P(n,t) from the preceding n polynomials.
The MRA is constructed by appending an n! to the left of the n-th row of the Riordan array A129652 and removing the unit diagonal.
The MRA is partially
1;
1, 1;
2, 3, 2;
6, 13, 9, 3;
24, 73, 52, 18, 4;
120, 501, 365, 130, 30, 5;
720, 4051, 3006, 1095, 260, 45, 6;
For the MRA:
1) First column is the n!'s.
2) Second column is A000262.
Then, e.g., from the terms in the MRA,
P(0,t) = 0!*(t-1)^0 = 1 from the n=0 row,
P(1,t) = 1!*(t-1)^1 + 1*P(0,t) = t from the n=1 row,
P(2,t) = 2!*(t-1)^2 + 3*P(0,t)*(t-1)^1 + 2*P(1,t)
P(3,t) = 3!*(t-1)^3 + 13*P(0,t)*(t-1)^2 + 9*P(1,t)*(t-1)^1 + 3*P(2,t)
generating
P(0,t) = (1)
P(1,t) = (0, 1)
P(2,t) = (-1, 1, 2)
P(3,t) = (4, -14, 10, 6) = 4 + -14 t + 10 t^2 + 6 t^3
P(4,t) = (-15, 83, -157, 89, 24)
P(5,t) = (56, -424, 1266, -1724, 826, 120)
P(6,t) = (-185, 1887, -8038, 17642, -19593, 8287, 720)
P(7,t) = (204, -4976, 36226, -126944, 239576, -234688, 90602, 5040)
For the polynomial array:
1) The first column is A009940 = (-1)^n * n!*Lag(n,1) =(-1)^n* n!* Lag(n,-1,-1).
2) Row sums are n!.
3) Highest order coefficient is n!.
4) Alternating row sum is below.
Then, with Rf(n,t) = [ t/(1-t)^(n+1) ] * P(n,t)/n!, the polylogs are given umbrally by
Li(-n,t)/n! = [ 1 + Rf(.,t) ]^n for n = 0,1,2,... so conversely
Rf(n,t) = {[ Li(-(.),t))/(.)! ]-1}^n.
Note umbrally [ Rf(.,t) ]^n = Rf(n,t) and
(1+Rf)^0 = 1^0 * [ Rf(.,t) ]^0 = Rf(0,t) = t/(1-t) = Li(0,t).
More generally, Newton interpolation holds and for Re(s) >= 0,
Li(-s,t)/(s)! = [ 1 + Rf(.,t) ]^s, when convergent in t.
Alternatively, the Rf's may be formed through differentiation of their o.g.f., the Rgf(z,t) above, which may also be written as
Rgf(z,t) = Sum_{k>=1} [ t^k ] * exp[ k * z/(z+1) ]/(z+1)
= Sum_{n>=0} [ (-z)^n ] * Sum_{k>=1} [ (t^k * Lag(n,k) ]
= Sum_{k>=0} [ (-z)^k ] * Lag(k,Li(-(.),t))
= Sum_{k>=0} [ z^k ] * {[ Li(-(.),t))/(.)! ]-1}^k
= exp[ Li(-(.),t)*z/(1+z) ]/(1+z),
and operationally as
Rgf(z,t) = {Sum_{k>=0} (-z)^k * Lag(k,tD)} [ t/(1-t) ]
= {Sum_{k>=0} (-z)^k * Lag(k,T(.,:tD:))} [ t/(1-t) ]
= {Sum_{k>=0} (-z)^k * Sum_{j>=0} Lag(k,j) (tD)^j /j!} [ x/(1-x) ]
where D is w.r.t. x at 0
= {Sum_{k>=0} (-z)^k*Sum_{j=0..k} (-1)^j*[ 1-Lag(k,.) ]^j*(:tD:)^j/ j!} [ t/(1-t) ]
= {Sum_{k>=0} (-z)^k * exp[ -[ 1-Lag(k,.) ]* :tD: ]} [ t/(1-t) ]
where (:tD:)^n = t^n * D^n, D is the derivative w.r.t. t unless otherwise stated, Lag(n,x) is a Laguerre polynomial and T(n,t) is a Touchard / Bell / exponential polynomial.
Hence [ t/(1-t)^(n+1) ] * P(n,t)/n! = Rf(n,t)
= {Sum_{k=0..n} (-1)^n-k)*[ C(m,k)/k! ]*(tD)^k} [ t/(1-t) ]
= {Sum_{k=0..n} (-1)^(n-k)*[ C(m,k)/k! ]*Sum_{j=0..k} S2(k,j)*(:tD:)^j} [ t/(1-t) ]
= {Sum_{k>=0} (-1)^(n-k) * Lag(n,k) * (tD)^k/k!} [ x/(1-x) ] where D is w.r.t. x at 0
= {Sum_{k=0..n} (-1)^(n-k)* [ 1-Lag(n,.) ]^k *(:tD:)^k/k!}[ t/(1-t) ],
where S2(k,j) are the Stirling numbers of the second kind and C(m,k), binomial coefficients.
The P(n,t) are related to the Laguerre polynomials through
P(n,t) = (-1)^n n! [ (1-t)^(n+1)} ] Sum_{k>=0} [ (t^k*Lag(n,k+1) ] = Sum_{m=0..n} a(n,m) * t^m
where a(n,m) = (-1)^n n! [ Sum_{k=0..m} (-1)^k * C(n+1,k) *Lag(n,m-k+1) ] .
Conjecture for the polynomial array:
The greatest common divisor of the coefficients of each polynomial is given by A060872(n)/n or, equivalently, by A038548(n).
Some e.g.f.'s for the Rf's are
exp[ -Rf(.,t)*z ] = exp{[ 1-Li(-(.),t)/(.)! ]*z}
= Sum_{n>=0} { (z^n/n!) * Sum_{k>=1} [ t^k * Lag(n,k) ] }
= Sum_{k>=1} { t^k * (e^z) * J_0[ 2*sqrt(k*z)}
= Sum_{n>=0} {(-1)^n*(z^n/n!)*(z^/j!)*Lag(n,-1)*Sum_{k>=1} [ t^k*k^n*(k+1)^j ]}
where J_0(x) is the zeroth Bessel function of the first kind.
The expressions (:tD:)^j}[ t/(1-t) ] and the Laguerre polynomials are intimately connected to Lah numbers and rook polynomials.
Some interesting relations to physics, probability and number theory are, for abs(t) < 1 and abs(z) < 1 at least,
BE(t,z) = Sum_{k>=0} [ (-z)^k ] *[ 1 + Rf(.,t) ]^k
= Rgf(-z/(1+z),t)/(1+z) = t/{exp(z)-t}, a Bose-Einstein distribution,
FD(t,z) = Sum_{k>=0} [ (-z)^k+1 ] *[ 1 + Rf(.,-t) ]^k
= -Rgf(-z/(1+z),-t)/(1+z) = t/{exp(z)+t}, a Fermi-Dirac distribution
and as t tends to 1 from below, z*BE(t,z) tends to the Bernoulli e.g.f., which is related by the Mellin transform to (s-1)!*Zeta(s). Taking Mellin transforms of BE and FD w.r.t. z gives the polylogarithm over different domains.
Since BE(2,z) is essentially the e.g.f. for the ordered Bell numbers, it follows that umbrally
n! * Lag(n,OB(.)) = P(n,2) and
n! * Lag(n,P(.,2)) = OB(n)
where OB(n) are the signed ordered Bell/Fubini numbers A000670.
I.e., P(n,2) and the ordered Bell numbers form a reciprocal Laguerre combinatorial transform pair,
or, equivalently, P(n,2)/n! and OB(n)/n! form a reciprocal finite difference pair, so
P(n,2)/n! = (-1)^(n+1) * Rf(n,2) = -{1-[ Li(-(.),2))/(.)! ]}^n and
OB(n) = -Li(-n,2).
Note that n!*Lag(n,(.)!*Lag(.,x)) = x^n is a true identity for general Laguerre polynomials Lag(n,x,a) with a = -1,0,1,..., so one could look at analogous higher-order reciprocal pairs containing OB(n).
In addition, a mixed-order iterated Laguerre transform gives
n!*Lag{n,(.)!*Lag[ .,P(.,2),0 ],-1}
= P(n,2) - n*P(n-1,2)
= n!*Lag[ n,OB(.),-1 ] = A084358(n), lists of sets of lists.
For Eulerian polynomials, E(n,t), given by A173018 (A008292),
E(n,t)/n! = [ 1-t+P(.,t)/(.)! ]^n
P(n,t)/n! = [ E(.,t)/(.)!-(1-t) ]^n, or equivalently
[ E(.,t)/(1-t) ]^n = n!*Lag[ n,-P(.,t)/(1-t) ]
[ -P(.,t)/(1-t) ]^n = n!*Lag[ n,E(.,t)/(1-t) ], a Laguerre transform pair.
Then from known relations for the Eulerian polynomials, the alternating row sum of the polynomial array is
P(n,-1) = (-2)^(n+1) * n! * Lag[ n,c(.)*Zeta(-(.)) ]
where c(n) = [ 2^(n+1) - 1 ] and Zeta is the Riemann zeta function. And so
Zeta(-n) = n! * Lag[ n,-P(.,-1)/2 ] / [ 2 - 2^(n+2) ],
which also holds, with the summation limit of Lag extended to infinity, for n = s, any complex number with Re(s) > 0.
Then from standard formulas for the signed Euler numbers EN(n), the Bernoulli numbers Ber(n), the Genocchi numbers GN(n), the Euler polynomials EP(n,t), the Eulerian polynomials E(n,t), the Touchard / Bell polynomials T(n,t) and the binomial C(x,y) = x!/[ (x-y)!*y! ]
2^(n+1) * (1-2^(n+1)) * (-1)^n * Zeta(-n)
= 2^(n+1) * (1-2^(n+1)) * Ber(n+1)/(n+1)
= [ -(1+EN(.)) ]^n
= 2^n * GN(n+1)/(n+1)
= 2^n * EP(n,0)
= (-1)^n * E(n,-1)
= (-2)^n * n! * Lag[ n,-P(.,-1)/2 ]
= (-2)^n * n! * C{T[ .,P(.,-1)/2 ] + n, n}
= an integer = Q(n)
These are related to the zag numbers A000182 by Zag(n) = abs[ Q(2*n-1) ]. And, abs[ Q(2*n-1) ] / 2^q(n) = Zag(n) / 2^q(n) = A002425(n) with q(n) = A101921.
These may be generalized by letting n = s, a complex number, (or interpolating) to obtain generalized Laguerre functions or confluent hypergeometric functions of the first kind, M(a,b,x), or second kind, U(a,b,x), whose arguments are P(.,-1)/2, such as
E(s,-1)/[ 2^s*s! ] = -2*Li(-s,-1)/s! = (2-2^(s+2)) * Zeta(-s)/s!
= C{T[ .,P(.,-1)/2 ] + s, s} = Lag[ s,-P(.,-1)/2 ] = M[ -s,1,-P(.,-1)/2 ] or,
GN(s+1)/(s+1)! = EP(s,0)/s! = C{-T[ .,P(.,-1)/2 ]-1, n} = U[ -s,1,-P(.,-1)/2 ]/(s)!
And even more generally
E(s,t)/(1-t)^s = [ (1-t)/t ] Li(-s,t) = s!*Lag[ s,-P(.,t)/(1-t) ]
= s! * C{T[ .,P(.,t)/(1-t) ] + s, s} = s! * M[ -s,1,-P(.,t)/(1-t) ] .
The Laguerre polynomial expressions are fundamental as they can be interpolated to form general M[ a,b,-P(.,t)/(1-t) ] or U[ a,b,-P(.,t)/(1-t) ] which can then be related either directly or by binomial transforms to many important Sheffer sequences, not to mention group theory and Riemann surfaces.
Note for frequently occurring expressions above: The Laguerre polynomials of order -1 and 0 are intimately connected to Lah numbers and rook polynomials and (tD)^n [t/(1-t)] = T(n,:tD:) [t/(1-t)] generates an Eulerian polynomial in the numerator of a rational function. - Tom Copeland, Sep 09 2008
The deformed Todd operator on p. 12 of Gunnells and Villegas is Td(a,D) = -D / (a*exp(-D) - 1) = [-D/(1-D)] * Rgf(D/(1-D), 1/a) = -D * BE(1/a,-D) = D * FD(-1/a,-D), where BE and FD are the Bose-Einstein and Fermi-Dirac distributions given above. See also connections among the Eulerian polynomials, Ehrhart polynomials, and the Todd operator in Beck and Robins, especially pages 31 and 37. - Tom Copeland, Jun 20 2017

References

  • M. Beck and S. Robins, Computing the Continuous Discretely, illustrated by D. Austin, Springer, 2007.

Crossrefs

Programs

  • Mathematica
    a[n_, m_] := (-1)^n *n!*Sum[(-1)^k*Binomial[n+1, k]*LaguerreL[n, m-k+1], {k, 0, m}]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)

Formula

a(n,m) = (-1)^n*n!*Sum_{k=0..m} (-1)^k*C(n+1,k)*Lag(n, m-k+1).

Extensions

A173018 given as reference for Eulerian polynomials and typo in a Laguerre function corrected by Tom Copeland, Oct 02 2014

A052844 E.g.f.: exp(x*(2-x)/(1-x)).

Original entry on oeis.org

1, 2, 6, 26, 148, 1032, 8464, 79592, 842832, 9914336, 128162464, 1804852128, 27489582784, 450089665664, 7880963503872, 146913179393408, 2904309329449216, 60677563647195648, 1335634021282590208, 30891084696208976384, 748854186528315687936
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

An unspecified number of sign-in sheets are available at a meeting of n people. The attendees sign in on one of the sheets in the order that they arrive at the meeting. But some, none, or all of the attendees forget to sign in. a(n) is the number of ways this can happen.
Previous name was: A simple grammar.

Crossrefs

Row sums of A129652.
Cf. A000262.

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Union(Z,B),S=Set(C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[Exp[x/(1 - x)] Exp[x], {x, 0, 20}], x]*
    Table[n!, {n, 0, 20}]
  • Maxima
    a(n):=n!*sum(((sum(binomial(m,j)*binomial(n-j-1,m-j-1),j,0,m)))/m!,m,1,n)+1; /* Vladimir Kruchinin, May 02 2012 */

Formula

E.g.f.: exp(x*(-2+x)/(-1+x)).
Recurrence: {a(0)=1, a(1)=2, a(2)=6, (-2-n^2-3*n)*a(n)+(n^2+5*n+6)*a(n+1)+(-2*n-6)*a(n+2)+a(n+3)}.
a(n) = n!*sum(m=1,n, ((sum(j=0,m, binomial(m,j)*binomial(n-j-1,m-j-1))))/m!)+1; [Vladimir Kruchinin, May 02 2012]
E.g.f. = exp(x)*exp(x/(1-x)) so a(n) = Sum_{k = 0..n} binomial(n,k)*A000262(k). - Peter Bala May 14 2012
a(n) ~ exp(2*sqrt(n)-n+1/2)*n^(n-1/4)/sqrt(2). - Vaclav Kotesovec, Oct 09 2012
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * k! * a(n-k). - Ilya Gutkovskiy, Aug 13 2021

Extensions

New name using e.g.f. from Ilya Gutkovskiy, Aug 13 2021

A350461 Number of ways to choose a subset of size n from [2n] and arrange its elements into a set of lists.

Original entry on oeis.org

1, 2, 18, 260, 5110, 126252, 3743124, 129156456, 5075323110, 223484406860, 10889720208796, 581327564001912, 33721264023340348, 2111076358455927800, 141812884019465389800, 10171645727323281955920, 775654703427461395949190, 62649431136582816113115660
Offset: 0

Views

Author

Alois P. Heinz, Feb 22 2022

Keywords

Examples

			a(2) = 18: 12, 21, 1|2, 13, 31, 1|3, 14, 41, 1|4, 23, 32, 2|3, 24, 42, 2|4, 34, 43, 3|4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> binomial(2*n, n)*b(n):
    seq(a(n), n=0..20);
  • Mathematica
    a[n_] := If[n==0, 1, ((2n)!/n!) Sum[Binomial[n-1, j]/(j+1)!, {j, 0, n-1}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 14 2022, from 1st formula *)

Formula

a(n) = binomial(2*n,n) * A000262(n) = A000984(n) * A000262(n).
a(n) = A129652(2n,n).

A351825 Total number of size 2 lists in all sets of lists partitioning [n] (cf. A000262).

Original entry on oeis.org

0, 0, 2, 6, 36, 260, 2190, 21042, 226856, 2709576, 35491770, 505620830, 7780224012, 128555409996, 2269569526406, 42625044254730, 848404205856720, 17836074466842512, 394872870912995826, 9181542826326252726, 223680717959853460340, 5697036951307194432660, 151396442683371572351742
Offset: 0

Views

Author

Geoffrey Critzer, Feb 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; Range[0, nn]! CoefficientList[Series[D[Exp[ x/(1 - x) - x ^2 + y x^2], y] /. y -> 1, {x, 0, nn}], x]
    Join[{0, 0, 2}, Table[n!*Hypergeometric1F1[n-1, 2, 1]/E, {n, 3, 25}]] (* Vaclav Kotesovec, Feb 21 2022 *)

Formula

a(n) = 2*binomial(n,2)*A000262(n-2).
E.g.f.: x^2*exp(x/(1-x)) = d/dy G(x,y)|y=1 where G(x,y) is the e.g.f. for A351823.
a(n) = Sum_{k=0..floor(n/2)} k * A351823(n,k).
a(n) ~ n^(n - 1/4) * exp(2*sqrt(n) - n - 1/2) / sqrt(2) * (1 - 101/(48*sqrt(n))). - Vaclav Kotesovec, Feb 21 2022
a(n) = 2 * A129652(n,2). - Alois P. Heinz, Feb 22 2022
Recurrence: (n-2)*a(n) = n*(2*n-5)*a(n-1) - (n-4)*(n-1)*n*a(n-2). - Vaclav Kotesovec, Mar 20 2023
Showing 1-7 of 7 results.