cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129744 a(n) = -(u^n-1)*(v^n-1) with u = 1+sqrt(2), v = 1-sqrt(2).

Original entry on oeis.org

2, 4, 14, 32, 82, 196, 478, 1152, 2786, 6724, 16238, 39200, 94642, 228484, 551614, 1331712, 3215042, 7761796, 18738638, 45239072, 109216786, 263672644, 636562078, 1536796800, 3710155682, 8957108164, 21624372014, 52205852192
Offset: 1

Views

Author

N. J. A. Sloane, May 13 2007

Keywords

Crossrefs

Programs

  • Maple
    u:=1+sqrt(2): v:=1-sqrt(2): a:=n->expand(-(u^n-1)*(v^n-1)): seq(a(n),n=1..33); # Emeric Deutsch, May 13 2007
  • Mathematica
    Table[Simplify[ -((1 + Sqrt[2])^n - 1)*((1 - Sqrt[2])^n - 1)], {n, 1, 30}] (* Stefan Steinerberger, May 15 2007 *)
  • PARI
    w = quadgen(8); vector(30, n, -((1+w)^n-1)*((1-w)^n-1)) \\ Michel Marcus, Mar 21 2015
    
  • PARI
    Vec(2*x*(1+x^2)/((x^2+2*x-1)*(-1+x)*(1+x))+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2015

Formula

a(2n) = A002203(2n)-2. a(2n+1) = A002203(2n+1). - R. J. Mathar, corrected Dec 05 2007.
G.f.: 2*x*(1+x^2)/((x^2+2*x-1)*(-1+x)*(1+x)).
From Peter Bala, Mar 19 2015: (Start)
a(n) = -det(I - M^n) where I is the 2X2 identity matrix and M = [2, 1; 1, 0]. Cf. A001350.
a(n) = 2*A113224(n-1).
This is divisibility sequence, that is, if n | m then a(n) | a(m).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*Sum_{n >= 1} Pell(n) *x^n. (End)
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n > 4. - Seiichi Manyama, Jun 07 2018

Extensions

More terms from Emeric Deutsch and Stefan Steinerberger, May 13 2007