cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A276719 Number A(n,k) of set partitions of [n] such that for each block b the smallest integer interval containing b has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 5, 5, 1, 0, 1, 1, 2, 5, 10, 8, 1, 0, 1, 1, 2, 5, 15, 20, 13, 1, 0, 1, 1, 2, 5, 15, 37, 42, 21, 1, 0, 1, 1, 2, 5, 15, 52, 87, 87, 34, 1, 0, 1, 1, 2, 5, 15, 52, 151, 208, 179, 55, 1, 0, 1, 1, 2, 5, 15, 52, 203, 409, 515, 370, 89, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2016

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.

Examples

			A(3,2) = 3: 12|3, 1|23, 1|2|3.
A(4,3) = 10: 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|24|3, 1|2|34, 1|2|3|4.
A(5,4) = 37: 1234|5, 123|45, 123|4|5, 124|35, 124|3|5, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 134|2|5, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 1|2345, 1|234|5, 1|235|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|24|35, 1|24|3|5, 1|25|34, 1|2|345, 1|2|34|5, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
Square array A(n,k) begins:
  1, 1,  1,   1,   1,    1,    1,    1,    1, ...
  0, 1,  1,   1,   1,    1,    1,    1,    1, ...
  0, 1,  2,   2,   2,    2,    2,    2,    2, ...
  0, 1,  3,   5,   5,    5,    5,    5,    5, ...
  0, 1,  5,  10,  15,   15,   15,   15,   15, ...
  0, 1,  8,  20,  37,   52,   52,   52,   52, ...
  0, 1, 13,  42,  87,  151,  203,  203,  203, ...
  0, 1, 21,  87, 208,  409,  674,  877,  877, ...
  0, 1, 34, 179, 515, 1100, 2066, 3263, 4140, ...
		

Crossrefs

Main diagonal gives A000110.
A(n+1,n) gives A005493(n-1) for n>0.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} A276727(n,i).

A141073 List of central integer pairs in Pascal-like triangles with index of asymmetry y = 3 and index of obliqueness z = 0 or z = 1.

Original entry on oeis.org

1, 1, 4, 2, 8, 4, 17, 8, 35, 17, 72, 35, 149, 72, 308, 149, 636, 308, 1314, 636, 2715, 1314, 5609, 2715, 11588, 5609, 23941, 11588, 49462, 23941, 102188, 49462, 211120, 102188, 436173, 211120, 901131, 436173, 1861732, 901131, 3846329, 1861732, 7946496, 3846329
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 16 2008

Keywords

Comments

For the Pascal-like triangle G(n, k) with index of asymmetry y = 3 and index of obliqueness z = 0, which is read by rows, we have G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, n+1) = 4, G(n+4, n+1) = 8, and G(n+5, k) = G(n+1, k-1) + G(n+1, k) + G(n+2, k) + G(n+3, k) + G(n+4, k) for n >= 0 and k = 1..(n+1). (This is array A140996.)
For the Pascal-like triangle G(n, k) with index of asymmetry y = 3 and index of obliqueness z = 1, which is read by rows, we have G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, 2) = 4, G(n+4, 3) = 8, and G(n+5, k) = G(n+1, k-3) + G(n+1, k-4) + G(n+2, k-3) + G(n+3, k-2) + G(n+4, k-1) for n > = 0 and k = 4..(n+4). (This is array A140995.)
Arrays A140995 and A140996 are mirror images of each other. For discussion about their properties and their connection to Stepan's triangles, see their documentation. See also the documentation of the sequences in the CROSSREFS. - Petros Hadjicostas, Jun 13 2019

Examples

			Pascal-like triangle with y = 3 and z = 0 (i.e., A140996) begins as follows:
  1, so no central pair.
  1 1, so a(1) = 1 and a(2) = 1.
  1 2 1, so no central pair.
  1 4 2 1, so a(3) = 4 and a(4) = 2.
  1 8 4 2 1, so no central pair.
  1 16 8 4 2 1, so a(5) = 8 and a(6) = 4.
  1 31 17 8 4 2 1, so no central pair.
  1 60 35 17 8 4 2 1, so a(7) = 17 and a(8) = 8.
  1 116 72 35 17 8 4 2 1, so no central pair.
  1 224 148 72 35 17 8 4 2 1, so a(9) = 35 and a(10) = 17.
  1 432 303 149 72 35 17 8 4 2 1, so no central pair.
  1 833 618 308 149 72 35 17 8 4 2 1, so a(11) = 72 and a(12) = 35.
... [edited by _Petros Hadjicostas_, Jun 13 2019]
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[x*(x^8 + 3*x^6 + x^5 + 3*x^4 + x^3 + 3*x^2 + x + 1)/(1 - x^2 - x^4 - 2*x^6 -x^8),{x,0,44}],x]] (* James C. McMahon, Jul 16 2025 *)

Formula

From Petros Hadjicostas, Jun 13 2019: (Start)
a(2*n - 1) = A140996(2*n - 1, n - 1) = A140995(2*n - 1, n) and a(2*n) = A140996(2*n - 1, n) = A140995(2*n - 1, n - 1) for n >= 1.
a(2*n) = a(2*n - 3) for n >= 3.
a(n) = 2*a(n-2) + A129847(floor(n/2) - (4 + (-1)^n)) for n >= 9.
G.f.: x*(x^8 + 3*x^6 + x^5 + 3*x^4 + x^3 + 3*x^2 + x + 1)/(1 - x^2 - x^4 - 2*x^6 -x^8). (End)

Extensions

Partially edited by N. J. A. Sloane, Jul 18 2008
More terms from Petros Hadjicostas, Jun 13 2019

A158687 Riordan array (1/(1-x),x(1+x)^2/(1-x)).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 7, 1, 1, 12, 24, 10, 1, 1, 16, 56, 49, 13, 1, 1, 20, 104, 160, 83, 16, 1, 1, 24, 168, 400, 351, 126, 19, 1, 1, 28, 248, 832, 1120, 656, 178, 22, 1, 1, 32, 344, 1520, 2912, 2561, 1102, 239, 25, 1
Offset: 0

Views

Author

Paul Barry, Mar 24 2009

Keywords

Comments

Row sums are A077936. Diagonal sums are A129847. Central terms are A059304.
Inverse of alternating signed version is A100326.

Examples

			Number triangle begins
1,
1, 1,
1, 4, 1,
1, 8, 7, 1,
1, 12, 24, 10, 1,
1, 16, 56, 49, 13, 1,
1, 20, 104, 160, 83, 16, 1
		

Crossrefs

Formula

Number triangle T(n,k) = Sum_{j=0..n-k} C(n-j,k)*C(2k,j).
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-1) + T(n-3,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 11 2013
G.f.: 1/(1-y-x*(1+y)^2). - Vladimir Kruchinin, Apr 21 2015

A276893 Number of ordered set partitions of [n] such that for each block b the smallest integer interval containing b has at most three elements.

Original entry on oeis.org

1, 1, 3, 13, 62, 352, 2348, 17880, 153138, 1458726, 15303672, 175387056, 2180632824, 29240091480, 420683340840, 6464876260440, 105699125013120, 1832140771795440, 33562515077608320, 647929998101403360, 13148236101412979280, 279809650659550924080
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2016

Keywords

Crossrefs

Column k=3 of A276890.
Cf. A129847.

Programs

  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, m!, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; a[n_] := b[n, 0, {0, 0}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 18 2017, after Alois P. Heinz *)

Formula

a(n) ~ exp(2) * n!. - Vaclav Kotesovec, Sep 22 2016

A320553 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most three elements and for at least one block c the smallest integer interval containing c has exactly three elements.

Original entry on oeis.org

2, 5, 12, 29, 66, 145, 315, 676, 1436, 3031, 6367, 13323, 27798, 57873, 120281, 249657, 517663, 1072520, 2220724, 4595938, 9508022, 19664296, 40659943, 84057614, 173750589, 359110196, 742150185, 1533651213, 3169118648, 6548358736, 13530454573, 27956404705
Offset: 3

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Examples

			a(4) = 5: 123|4, 13|24, 13|2|4, 1|234, 1|24|3.
		

Crossrefs

Column k=3 of A276727.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(3):
    seq(a(n), n=3..35);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1]~Complement~{0}}]];
    A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0 &, k - 1]]]];
    a[n_] := With[{k = 3}, A[n, k] - If[k == 0, 0, A[n, k - 1]]];
    a /@ Range[3, 35] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

G.f.: (x+2)*x^3/((x^2+x-1)*(x^4+2*x^3+x^2+x-1)).
a(n) = A129847(n) - A000045(n+1).

A320554 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most four elements and for at least one block c the smallest integer interval containing c has exactly four elements.

Original entry on oeis.org

5, 17, 45, 121, 336, 901, 2347, 6014, 15314, 38766, 97531, 244054, 608339, 1511919, 3748379, 9273353, 22901665, 56477538, 139114445, 342325451, 841676972, 2067997764, 5078117000, 12463618356, 30577931115, 74993361731, 183870516407, 450708620604, 1104563863868
Offset: 4

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Examples

			a(5) = 17: 1234|5, 124|35, 124|3|5, 134|25, 134|2|5, 13|245, 13|25|4, 14|235, 14|23|5, 1|2345, 1|235|4, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|25|34, 1|25|3|4.
		

Crossrefs

Column k=4 of A276727.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(4):
    seq(a(n), n=4..35);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1]~Complement~{0}}]];
    A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0 &, k - 1]]]];
    a[n_] := With[{k = 4}, A[n, k] - If[k == 0, 0, A[n, k - 1]]];
    a /@ Range[4, 35] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

G.f.: -(-x^8 -3*x^7 +x^6 +7*x^5 +5*x^4) / (x^12 +5*x^11 +7*x^10 -x^9 -13*x^8 -19*x^7 -14*x^6 -6*x^5 +x^4 +2*x^2 +2*x-1).
a(n) = A276720(n) - A129847(n).
Showing 1-6 of 6 results.