A100326 Triangle, read by rows, where row n equals the inverse binomial of column n of square array A100324, which lists the self-convolutions of SHIFT(A003169).
1, 1, 1, 3, 4, 1, 14, 20, 7, 1, 79, 116, 46, 10, 1, 494, 736, 311, 81, 13, 1, 3294, 4952, 2174, 626, 125, 16, 1, 22952, 34716, 15634, 4798, 1088, 178, 19, 1, 165127, 250868, 115048, 36896, 9094, 1724, 240, 22, 1, 1217270, 1855520, 862607, 285689, 74687, 15629, 2561, 311, 25, 1
Offset: 0
Examples
Rows begin: 1; 1, 1; 3, 4, 1; 14, 20, 7, 1; 79, 116, 46, 10, 1; 494, 736, 311, 81, 13, 1; 3294, 4952, 2174, 626, 125, 16, 1; 22952, 34716, 15634, 4798, 1088, 178, 19, 1; 165127, 250868, 115048, 36896, 9094, 1724, 240, 22, 1; 1217270, 1855520, 862607, 285689, 74687, 15629, 2561, 311, 25, 1; ... First column forms A003169 shift right. Binomial transform of row 3 forms column 3 of square A100324: BINOMIAL([14,20,7,1]) = [14,34,61,96,140,194,259,...]. Binomial transform of row 4 forms column 4 of square A100324: BINOMIAL([79,116,46,10,1]) = [79,195,357,575,860,1224,...].
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
Programs
-
Haskell
import Data.List (transpose) a100326 n k = a100326_tabl !! n !! k a100326_row n = a100326_tabl !! n a100326_tabl = [1] : f [[1]] where f xss@(xs:_) = ys : f (ys : xss) where ys = y : map (sum . zipWith (*) (zs ++ [y])) (map reverse zss) y = sum $ zipWith (*) [1..] xs zss@((:zs):) = transpose $ reverse xss -- Reinhard Zumkeller, Nov 21 2015
-
Maple
A100326 := proc(n,k) if k < 0 or k > n then 0 ; elif n = 0 then 1 ; elif k = 0 then A003169(n) else add(procname(i+1,0)*procname(n-i-1,k-1),i=0..n-k) ; end if; end proc: # R. J. Mathar, Mar 15 2013
-
Mathematica
lim= 9; t[0, 0]=1; t[n_, 0]:= t[n, 0]= Sum[(k+1)*t[n-1,k], {k,0,n-1}]; t[n_, k_]:= t[n, k]= Sum[t[j+1, 0]*t[n-j-1, k-1], {j,0,n-k}]; Flatten[Table[t[n, k], {n,0,lim}, {k,0,n}]] (* Jean-François Alcover, Sep 20 2011 *)
-
PARI
T(n,k)=if(n
-
SageMath
@CachedFunction def T(n,k): # T = A100326 if (k<0 or k>n): return 0 elif (k==n): return 1 elif (k==0): return sum((j+1)*T(n-1,j) for j in range(n)) else: return sum(T(j+1,0)*T(n-j-1,k-1) for j in range(n-k+1)) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 30 2023
Formula
T(n, 0) = A003169(n) = Sum_{k=0..n-1} (k+1)*T(n-1, k) for n>0, with T(0, 0)=1.
T(n, k) = Sum_{i=0..n-k} T(i+1, 0)*T(n-i-1, k-1) for n > 0.
T(2*n, n) = A264717(n).
Sum_{k=0..n} T(n, k) = A100327(n).
G.f.: A(x, y) = (1 + G(x))/(1 - y*G(x)), where G(x) is the g.f. of A003169.
From G. C. Greubel, Jan 30 2023: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..n-1} (-1)^k*T(n, k) = A033999(n). (End)
Comments