cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002478 Bisection of A000930.

Original entry on oeis.org

1, 1, 3, 6, 13, 28, 60, 129, 277, 595, 1278, 2745, 5896, 12664, 27201, 58425, 125491, 269542, 578949, 1243524, 2670964, 5736961, 12322413, 26467299, 56849086, 122106097, 262271568, 563332848, 1209982081, 2598919345, 5582216355, 11990037126, 25753389181
Offset: 0

Views

Author

Keywords

Comments

Number of ways to tile a 3 X n region with 1 X 1, 2 X 2 and 3 X 3 tiles.
Number of ternary words with subwords (0,0), (0,1) and (1,1) not allowed. - Olivier Gérard, Aug 28 2012
Diagonal sums of A063967. - Paul Barry, Nov 09 2005
Row sums of number triangle A116088. - Paul Barry, Feb 04 2006
Sequence is identical to its second differences negated, minus the first 3 terms. - Paul Curtz, Feb 10 2008
a(n) = term (3,3) in the 3 X 3 matrix [0,1,0; 0,0,1; 1,2,1]^n. - Gary W. Adamson, May 30 2008
a(n)/a(n-1) tends to 2.147899035..., an eigenvalue of the matrix and a root to x^3 - x^2 - 2x - 1 = 0. - Gary W. Adamson, May 30 2008
INVERT transform of (1, 2, 1, 0, 0, 0, ...) = (1, 3, 6, 13, 28, ...); such that (1, 2, 1, 0, 0, 0, ...) convolved with (1, 1, 3, 6, 13, 28, 0, 0, 0, ...) shifts to the left. - Gary W. Adamson, Apr 18 2010
a(n) is the top left entry in the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 0, 1; 1, 0, 0] or of the 3 X 3 matrix [1, 1, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014

Examples

			a(3)=6 as there is one tiling of a 3 X 3 region with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 1 tiling consisting of the 3 X 3 tile.
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 322.
  • S. Heubach, Tiling an m X n Area with Squares of Size up to k X k (m<=5), Congressus Numerantium 140 (1999), pp. 43-64.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000930, A054856, A054857, A025234, A078007, A078039, A226546, A077936 (INVERT transform), A008346 (inverse INVERT transform).

Programs

  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else Self(n-1) +2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 14 2023
    
  • Mathematica
    f[A_]:= Module[{til = A}, AppendTo[til, A[[-1]] + 2A[[-2]] + A[[-3]]]]; NumOfTilings[ n_ ]:= Nest[ f, {1,1,3}, n-2]; NumOfTilings[30]
    LinearRecurrence[{1,2,1},{1,1,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
    CoefficientList[Series[1/(1-x-2x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Oct 17 2024 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,2,1]^n*[1;1;3])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    @CachedFunction
    def a(n): # A002478
        if (n<3): return (1,1,3)[n]
        else: return sum(binomial(2,j)*a(n-j) for j in range(1,4))
    [a(n) for n in (0..40)] # G. C. Greubel, Apr 14 2023

Formula

G.f.: 1 / (1-x-2*x^2-x^3). [Simon Plouffe in his 1992 dissertation.]
a(n) = a(n-1) + 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} binomial(2*n-2*k, k). - Paul Barry, Nov 13 2004
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(j, n-k-j)*C(j, k). - Paul Barry, Nov 09 2005
a(n) = Sum_{k=0..n} C(2*k,n-k) = Sum_{k=0..n} C(n,k)*C(3*k,n)/C(3*k,k). - Paul Barry, Feb 04 2006
a(n) = A000930(n) + 2*Sum_{i=0..n-2} a(i)*A000930(n-2-i). - Michael Tulskikh, Jun 07 2020

Extensions

Additional comments from Silvia Heubach (silvi(AT)cine.net), Apr 21 2000

A158687 Riordan array (1/(1-x),x(1+x)^2/(1-x)).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 7, 1, 1, 12, 24, 10, 1, 1, 16, 56, 49, 13, 1, 1, 20, 104, 160, 83, 16, 1, 1, 24, 168, 400, 351, 126, 19, 1, 1, 28, 248, 832, 1120, 656, 178, 22, 1, 1, 32, 344, 1520, 2912, 2561, 1102, 239, 25, 1
Offset: 0

Views

Author

Paul Barry, Mar 24 2009

Keywords

Comments

Row sums are A077936. Diagonal sums are A129847. Central terms are A059304.
Inverse of alternating signed version is A100326.

Examples

			Number triangle begins
1,
1, 1,
1, 4, 1,
1, 8, 7, 1,
1, 12, 24, 10, 1,
1, 16, 56, 49, 13, 1,
1, 20, 104, 160, 83, 16, 1
		

Crossrefs

Formula

Number triangle T(n,k) = Sum_{j=0..n-k} C(n-j,k)*C(2k,j).
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-1) + T(n-3,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 11 2013
G.f.: 1/(1-y-x*(1+y)^2). - Vladimir Kruchinin, Apr 21 2015

A077983 Expansion of 1/(1 + 2*x - 2*x^2 + x^3).

Original entry on oeis.org

1, -2, 6, -17, 48, -136, 385, -1090, 3086, -8737, 24736, -70032, 198273, -561346, 1589270, -4499505, 12738896, -36066072, 102109441, -289089922, 818464798, -2317218881, 6560457280, -18573817120, 52585767681, -148879626882, 421504606246, -1193354233937, 3378597307248
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A078054 (first differences), A077936.

Programs

  • GAP
    a:=[1,-2,6];; for n in [4..30] do a[n]:=-2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1+2*x-2*x^2+x^3) )); // G. C. Greubel, Jun 25 2019
    
  • Mathematica
    LinearRecurrence[{-2,2,-1}, {1,-2,6}, 30] (* or *) CoefficientList[ Series[1/(1+2*x-2*x^2+x^3), {x,0,30}], x] (* G. C. Greubel, Jun 25 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1+2*x-2*x^2+x^3)) \\ G. C. Greubel, Jun 25 2019
    
  • Sage
    (1/(1+2*x-2*x^2+x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
    

Formula

a(n) = (-1)^n * A077936(n). - Ivan Neretin, Jul 05 2015
a(n) = -2*a(n-1) + 2*a(n-2) - a(n-3) with a(0) = 1, a(1) = -2, a(2) = 6. - Taras Goy, Aug 04 2017

A189187 Riordan matrix (1/(1-x-x^2-x^3),(x+x^2)/(1-x-x^2-x^3)).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 7, 5, 1, 7, 17, 16, 7, 1, 13, 38, 46, 29, 9, 1, 24, 82, 122, 99, 46, 11, 1, 44, 174, 304, 303, 184, 67, 13, 1, 81, 362, 728, 857, 641, 309, 92, 15, 1, 149, 743, 1690, 2291, 2031, 1212, 482, 121, 17, 1, 274, 1509, 3827, 5869, 6004, 4260, 2108, 711, 154, 19, 1
Offset: 0

Views

Author

Emanuele Munarini, Apr 18 2011

Keywords

Comments

Row sums are A077936, diagonal sums are A077946

Examples

			Triangle begins:
1
1,1
2,3,1
4,7,5,1
7,17,16,7,1
13,38,46,29,9,1
24,82,122,99,46,11,1
44,174,304,303,184,67,13,1
81,362,728,857,641,309,92,15,1
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[Binomial[i+k,k]Sum[Binomial[i+k,j]Binomial[n-i-j,i+k],{j,0,n-k-2i}],{i,0,n}],{n,0,20},{k,0,n}]]
  • Maxima
    create_list(sum(binomial(i+k,k)*sum(binomial(i+k,j)*binomial(n-i-j,i+k),j,0,n-k-2*i),i,0,n),n,0,8,k,0,n);

Formula

T(n,k) = [x^n](x+x^2)^k/(1-x-x^2-x^3)^(k+1).
T(n,k) = sum(binomial(i+k,k)*sum(binomial(i+k,j)*binomial(n-i-j,i+k),j=0..n-k-2*i),i=0..n).
T(n,k) = sum(binomial(k,i)*(-1)^(k-i)*sum(binomial(j+k,k)*trinomial(i+j,n-3*k+2*i-j),j=0..n-k),i=0..k)
Recurrence: T(n+3,k+1) = T(n+2,k+1) + T(n+2,k) + T(n+1,k+1) + T(n+1,k) + T(n,k+1)

Extensions

a(23) and a(40) corrected by Georg Fischer, Feb 20 2021 and Apr 29 2022
Showing 1-4 of 4 results.