A129857 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+857)^2 = y^2.
0, 235, 1696, 2571, 3796, 12075, 17140, 24255, 72468, 101983, 143448, 424447, 596472, 838147, 2475928, 3478563, 4887148, 14432835, 20276620, 28486455, 84122796, 118182871, 166033296, 490305655, 688822320, 967715035, 2857712848
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
Crossrefs
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(235+1461*x+875*x^2-185*x^3-487*x^4-185*x^5)/((1-x)*(1-6*x^3+x^6))) ); // G. C. Greubel, May 03 2018 -
Mathematica
LinearRecurrence[{1,0,6,-6,0,-1,1},{0,235,1696,2571,3796,12075, 17140}, 30] (* or *) CoefficientList[Series[x (235+1461x+875x^2-185x^3- 487x^4- 185x^5)/((1-x)(1-6x^3+x^6)),{x,0,30}],x] (* Harvey P. Dale, Apr 24 2011 *)
-
PARI
{forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1714*n+734449), print1(n, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6)+1714 for n > 6; a(1)=0, a(2)=235, a(3)=1696, a(4)=2571, a(5)=3796, a(6)=12075.
G.f.: x*(235+1461*x+875*x^2-185*x^3-487*x^4-185*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 857*A001652(k) for k >= 0.
Extensions
Edited and two terms added by Klaus Brockhaus, May 18 2009
Comments