cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129857 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+857)^2 = y^2.

Original entry on oeis.org

0, 235, 1696, 2571, 3796, 12075, 17140, 24255, 72468, 101983, 143448, 424447, 596472, 838147, 2475928, 3478563, 4887148, 14432835, 20276620, 28486455, 84122796, 118182871, 166033296, 490305655, 688822320, 967715035, 2857712848
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 03 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+857, y).
Corresponding values y of solutions (x, y) are in A160206.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (907+210*sqrt(2))/857 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1208787+678878*sqrt(2))/857^2 for n mod 3 = 0.

Crossrefs

Cf. A160206, A001652, A123654, A156035 (decimal expansion of 3+2*sqrt(2)), A160207 (decimal expansion of (907+210*sqrt(2))/857), A160208 (decimal expansion of (1208787+678878*sqrt(2))/857^2).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat  Coefficients(R!(x*(235+1461*x+875*x^2-185*x^3-487*x^4-185*x^5)/((1-x)*(1-6*x^3+x^6))) );  // G. C. Greubel, May 03 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,235,1696,2571,3796,12075, 17140}, 30] (* or *) CoefficientList[Series[x (235+1461x+875x^2-185x^3- 487x^4- 185x^5)/((1-x)(1-6x^3+x^6)),{x,0,30}],x] (* Harvey P. Dale, Apr 24 2011 *)
  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1714*n+734449), print1(n, ",")))}
    

Formula

a(n) = 6*a(n-3)-a(n-6)+1714 for n > 6; a(1)=0, a(2)=235, a(3)=1696, a(4)=2571, a(5)=3796, a(6)=12075.
G.f.: x*(235+1461*x+875*x^2-185*x^3-487*x^4-185*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 857*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, May 18 2009