A156608
Triangle T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -2, 2, 2, -2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, -1, 2, 2, -1, 1, 1, 1, -2, 2, 2, -4, 2, 2, -2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, -1, 2, 2, -1, 2, 2, -1, 1, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, -1, 1;
1, 1, 1, 1;
1, 1, -1, 1, 1;
1, -2, 2, 2, -2, 1;
1, 1, 2, 2, 2, 1, 1;
1, 1, -1, 2, 2, -1, 1, 1;
1, -2, 2, 2, -4, 2, 2, -2, 1;
1, 1, 2, 2, 2, 2, 2, 2, 1, 1;
1, 1, -1, 2, 2, -1, 2, 2, -1, 1, 1;
-
(* First program *)
b[n_, k_, d_]:= If[n==k, 2, If[(k==d && n==d-2) || (n==d && k==d-2), -1, If[(k==n- 1 || k==n+1) && n<=d-1 && k<=d-1, -1, 0]]];
M[d_]:= Table[b[n, k, d], {n, d}, {k, d}];
p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
f = Table[p[x, n], {n, 0, 20}];
t[n_, k_]:= If[k==0, n!, Product[f[[j+1]], {j, n-1}]]/.x -> k+1;
T[n_, k_, m_]:= Round[t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 2], {n,0,15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 23 2021 *)
(* Second program *)
f[n_, x_]:= f[n,x]= If[n<2, (2-x)^n, (2-x)*LucasL[2*(n-1), Sqrt[-x]] ];
t[n_, k_]:= t[n,k]= If[k==0, n!, Product[f[j, x], {j, n-1}]]/.x -> (k+1);
T[n_, k_, m_]:= T[n,k,m]= Round[t[n,m]/(t[k,m]*t[n-k,m])];
Table[T[n, k, 2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 23 2021 *)
-
@CachedFunction
def f(n,x): return (2-x)^n if (n<2) else 2*(2-x)*sum( ((n-1)/(2*n-j-2))*binomial(2*n-j-2, j)*(-x)^(n-j-1) for j in (0..n-1) )
def g(n,k): return factorial(n) if (k==0) else product( f(j, k+1) for j in (1..n-1) )
def T(n,k,m): return round( g(n,m)/(g(k,m)*g(n-k,m)) )
flatten([[T(n,k,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 23 2021
A156609
Triangle T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -2, 1, 1, 4, 4, 1, 1, -4, 8, -4, 1, 1, 4, 8, 8, 4, 1, 1, -4, 8, -8, 8, -4, 1, 1, 4, 8, 8, 8, 8, 4, 1, 1, -4, 8, -8, 8, -8, 8, -4, 1, 1, 4, 8, 8, 8, 8, 8, 8, 4, 1, 1, -4, 8, -8, 8, -8, 8, -8, 8, -4, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, -2, 1;
1, 4, 4, 1;
1, -4, 8, -4, 1;
1, 4, 8, 8, 4, 1;
1, -4, 8, -8, 8, -4, 1;
1, 4, 8, 8, 8, 8, 4, 1;
1, -4, 8, -8, 8, -8, 8, -4, 1;
1, 4, 8, 8, 8, 8, 8, 8, 4, 1;
1, -4, 8, -8, 8, -8, 8, -8, 8, -4, 1;
-
function T(n,k)
if k eq 0 or k eq n then return 1;
elif n eq 2 and k eq 1 then return -2;
elif k eq 1 or k eq n-1 then return 4*(-1)^(n+1);
elif k eq 2 or k eq n-2 then return 8;
elif (n mod 2) eq 0 then return 8*(-1)^k;
else return 8;
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 24 2021
-
(* First program *)
b[n_, k_, d_]:= If[n==k, 2, If[(k==d && n==d-2) || (n==d && k==d-2), -1, If[(k==n- 1 || k==n+1) && n<=d-1 && k<=d-1, -1, 0]]];
M[d_]:= Table[b[n, k, d], {n, d}, {k, d}];
p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
f = Table[p[x, n], {n, 0, 20}];
t[n_, k_]:= If[k==0, n!, Product[f[[j+1]], {j, n-1}]]/.x -> k+1;
T[n_, k_, m_]:= Round[t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 3], {n,0,15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 23 2021 *)
(* Second program *)
f[n_, x_]:= f[n,x]= If[n<2, (2-x)^n, (2-x)*LucasL[2*(n-1), Sqrt[-x]] ];
t[n_, k_]:= t[n,k]= If[k==0, n!, Product[f[j, x], {j, n-1}]]/.x -> (k+1);
T[n_, k_, m_]:= T[n,k,m]= Round[t[n,m]/(t[k,m]*t[n-k,m])];
Table[T[n, k, 3], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 23 2021 *)
-
@CachedFunction
def f(n,x): return (2-x)^n if (n<2) else 2*(2-x)*sum( ((n-1)/(2*n-j-2))*binomial(2*n-j-2, j)*(-x)^(n-j-1) for j in (0..n-1) )
def g(n,k): return factorial(n) if (k==0) else product( f(j, k+1) for j in (1..n-1) )
def T(n,k,m): return round( g(n,m)/(g(k,m)*g(n-k,m)) )
flatten([[T(n,k,3) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 23 2021
A156610
Triangle T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -3, 1, 1, 9, 9, 1, 1, -21, 63, -21, 1, 1, 54, 378, 378, 54, 1, 1, -141, 2538, -5922, 2538, -141, 1, 1, 369, 17343, 104058, 104058, 17343, 369, 1, 1, -966, 118818, -1861482, 4786668, -1861482, 118818, -966, 1, 1, 2529, 814338, 33387858, 224175618, 224175618, 33387858, 814338, 2529, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, -3, 1;
1, 9, 9, 1;
1, -21, 63, -21, 1;
1, 54, 378, 378, 54, 1;
1, -141, 2538, -5922, 2538, -141, 1;
1, 369, 17343, 104058, 104058, 17343, 369, 1;
1, -966, 118818, -1861482, 4786668, -1861482, 118818, -966, 1;
1, 2529, 814338, 33387858, 224175618, 224175618, 33387858, 814338, 2529, 1;
-
(* First program *)
b[n_, k_, d_]:= If[n==k, 2, If[(k==d && n==d-2) || (n==d && k==d-2), -1, If[(k==n- 1 || k==n+1) && n<=d-1 && k<=d-1, -1, 0]]];
M[d_]:= Table[b[n, k, d], {n, d}, {k, d}];
p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
f = Table[p[x, n], {n, 0, 20}];
t[n_, k_]:= If[k==0, n!, Product[f[[j+1]], {j, n-1}]]/.x -> k+1;
T[n_, k_, m_]:= Round[t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 4], {n,0,15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 24 2021 *)
(* Second program *)
f[n_, x_]:= f[n,x]= If[n<2, (2-x)^n, (2-x)*LucasL[2*(n-1), Sqrt[-x]] ];
t[n_, k_]:= t[n,k]= If[k==0, n!, Product[f[j, x], {j, n-1}]]/.x -> (k+1);
T[n_, k_, m_]:= T[n,k,m]= Round[t[n,m]/(t[k,m]*t[n-k,m])];
Table[T[n, k, 4], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 24 2021 *)
-
@CachedFunction
def f(n,x): return (2-x)^n if (n<2) else 2*(2-x)*sum( ((n-1)/(2*n-j-2))*binomial(2*n-j-2, j)*(-x)^(n-j-1) for j in (0..n-1) )
def g(n,k): return factorial(n) if (k==0) else product( f(j, k+1) for j in (1..n-1) )
def T(n,k,m): return round( g(n,m)/(g(k,m)*g(n-k,m)) )
flatten([[T(n,k,4) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 24 2021
A156612
Square array T(n, k) = Product_{j=1..n} A129862(k+1, j) with T(n, 0) = n!, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 0, 6, 1, 1, -1, 0, 24, 1, 1, -2, -1, 0, 120, 1, 1, -3, -8, -1, 0, 720, 1, 1, -4, -27, 32, 2, 0, 5040, 1, 1, -5, -64, 567, 128, 2, 0, 40320, 1, 1, -6, -125, 3584, 30618, -512, 2, 0, 362880, 1, 1, -7, -216, 14375, 745472, -4317138, -2048, -4, 0, 3628800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1 ...;
1, 1, 1, 1, 1, 1 ...;
2, 0, -1, -2, -3, -4 ...;
6, 0, -1, -8, -27, -64 ...;
24, 0, -1, 32, 567, 3584 ...;
120, 0, 2, 128, 30618, 745472 ...;
Triangle begins as:
1;
1, 1;
1, 1, 2;
1, 1, 0, 6;
1, 1, -1, 0, 24;
1, 1, -2, -1, 0, 120;
1, 1, -3, -8, -1, 0, 720;
1, 1, -4, -27, 32, 2, 0, 5040;
1, 1, -5, -64, 567, 128, 2, 0, 40320;
1, 1, -6, -125, 3584, 30618, -512, 2, 0, 362880;
1, 1, -7, -216, 14375, 745472, -4317138, -2048, -4, 0, 3628800;
-
(* First program *)
b[n_, k_, d_]:= If[n==k, 2, If[(k==d && n==d-2) || (n==d && k==d-2), -1, If[(k==n- 1 || k==n+1) && n<=d-1 && k<=d-1, -1, 0]]];
M[d_]:= Table[b[n, k, d], {n, d}, {k, d}];
p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
f = Table[p[x, n], {n, 0, 30}];
T[n_, k_]:= If[k==0, n!, Product[f[[j+1]], {j, n-1}]]/.x -> k+1;
Table[T[k, n - k], {n,0,15}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 25 2021 *)
(* Second program *)
f[n_, x_]:= f[n, x]= If[n<2, (2-x)^n, (2-x)*LucasL[2*(n-1), Sqrt[-x]]];
t[n_, k_]:= t[n, k]= If[k==0, n!, Product[f[j, x], {j, n-1}]]/.x -> (k+1);
Table[t[k, n-k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 25 2021 *)
-
@CachedFunction
def f(n,x): return (2-x)^n if (n<2) else 2*(2-x)*sum( ((n-1)/(2*n-j-2))*binomial(2*n-j-2, j)*(-x)^(n-j-1) for j in (0..n-1) )
def T(n,k): return factorial(n) if (k==0) else product( f(j, k+1) for j in (1..n-1) )
flatten([[T(k,n-k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 25 2021
A135185
Triangle read by rows: E. F. Cornelius Jr. and Phill Schultz-based polynomials for the D_n Cartan Matrices in sequence A129862 that give a triangular sequence.
Original entry on oeis.org
1, 2, -4, 1, -4, 4, 2, -11, 19, -4, 12, -82, 142, -84, 4, 288, -2208, 4142, -2262, 422, -4, 34560, -277056, 566448, -327528, 49938, -2504, 4, 24883200, -202141440, 427397472, -267303264, 44330580, -1580666, 17368, -4, 125411328000, -1021977907200, 2179398320640, -1397599077312
Offset: 1
{1},
{2, -4},
{1, -4, 4},
{2, -11, 19, -4},
{12, -82, 142, -84, 4},
{288, -2208, 4142, -2262, 422, -4},
{34560, -277056, 566448, -327528, 49938, -2504, 4},
{24883200, -202141440, 427397472, -267303264, 44330580, -1580666, 17368, -4},
Showing 1-5 of 5 results.
Comments