A129868 Binary palindromic numbers with only one 0 bit.
0, 5, 27, 119, 495, 2015, 8127, 32639, 130815, 523775, 2096127, 8386559, 33550335, 134209535, 536854527, 2147450879, 8589869055, 34359607295, 137438691327, 549755289599, 2199022206975, 8796090925055, 35184367894527, 140737479966719, 562949936644095
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..1630
- Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024. See pp. 9, 14.
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video, video (2015)
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Crossrefs
Programs
-
Magma
[2^(2*n+1)-2^n-1: n in [0..25]]; // Vincenzo Librandi, Dec 08 2015
-
Maple
A129868:=n->2^(2*n + 1) - 2^n - 1: seq(A129868(n), n=0..30); # Wesley Ivan Hurt, Dec 08 2015
-
Mathematica
(* 1st *) FromDigits[ #,2]&/@NestList[Append[Prepend[ #, 1], 1]&, {0}, 25] (* 2nd *) NestList[(1/2)(7 + 8# + Sqrt[9 + 8# ])&, 0, 22] (* both of these are from Zak Seidov *) f[n_] := 2^(2n + 1) - 2^n - 1; Table[f@n, {n, 0, 22}] (* Robert G. Wilson v, Aug 24 2007 *) Table[EulerE[2, 2^n], {n, 1, 60}]/2 - 1 (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *) (* After running the program in A134808 *) Select[Range[0, 2^16 - 1], cyclopsQ[#, 2] &] (* Alonso del Arte, Dec 17 2010 *) LinearRecurrence[{7, -14, 8}, {0, 5, 27}, 30] (* Vincenzo Librandi, Dec 08 2015 *)
-
PARI
concat(0, Vec(x*(5-8*x)/(1-7*x+14*x^2-8*x^3) + O(x^100))) \\ Altug Alkan, Dec 08 2015
-
Python
def A129868(n): return ((m:=1<
Chai Wah Wu, Mar 19 2024
Formula
a(n) = 2^(2n + 1) - 2^n - 1 = 2*4^n - 2^n - 1 = (2^n - 1)(2*2^n + 1).
G.f.: x*(8*x-5)/((x-1)*(2*x-1)*(4*x-1)).
Recurrences:
a(n) = (1/2)*(7 + 8*a(n - 1) + sqrt(9 + 8*a(n - 1))), a(0) = 0;
a(n) = 6*a(n - 1) - 8*a(n - 2) - 3, a(0) = 0, a(1) = 5;
a(n) = 7*a(n - 1) - 14*a(n - 2) + 8*a(n - 3), a(0) = 0, a(1) = 5, a(2) = 27.
a(n) = A006516(n+1) - 1.
Comments