cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129868 Binary palindromic numbers with only one 0 bit.

Original entry on oeis.org

0, 5, 27, 119, 495, 2015, 8127, 32639, 130815, 523775, 2096127, 8386559, 33550335, 134209535, 536854527, 2147450879, 8589869055, 34359607295, 137438691327, 549755289599, 2199022206975, 8796090925055, 35184367894527, 140737479966719, 562949936644095
Offset: 0

Views

Author

Zak Seidov, May 24 2007

Keywords

Comments

Binary expansion is 0, 101, 11011, 1110111, 111101111, ... (see A138148).
9 + 8a(n) = s^2 is a perfect square with s = 2^(n + 2) -1 = 3, 7, 15, 31, 63, ...
Numbers with middle bit 0, that have only one bit 0, and the total number of bits is odd.
The fractional part of the base 2 logarithm of a(n) approaches 1 as n approaches infinity.
Also called binary cyclops numbers.
Last digit of the decimal representation follows the pattern 5, 7, 9, 5, 5, 7, 9, 5, ... . - Alex Ratushnyak, Dec 08 2012

Crossrefs

Base 10 analog is A134808.
Binary palindromic numbers, including repunits (or Mersenne numbers A000225) are in A006995. The sequence of binary pandigital (having both 0's and 1's) palindromic numbers begins 5, 9, 17, 21, 27, 33, 45, 51, 65, 73, ...

Programs

  • Magma
    [2^(2*n+1)-2^n-1: n in [0..25]]; // Vincenzo Librandi, Dec 08 2015
    
  • Maple
    A129868:=n->2^(2*n + 1) - 2^n - 1: seq(A129868(n), n=0..30); # Wesley Ivan Hurt, Dec 08 2015
  • Mathematica
    (* 1st *) FromDigits[ #,2]&/@NestList[Append[Prepend[ #, 1], 1]&, {0}, 25] (* 2nd *) NestList[(1/2)(7 + 8# + Sqrt[9 + 8# ])&, 0, 22] (* both of these are from Zak Seidov *)
    f[n_] := 2^(2n + 1) - 2^n - 1; Table[f@n, {n, 0, 22}] (* Robert G. Wilson v, Aug 24 2007 *)
    Table[EulerE[2, 2^n], {n, 1, 60}]/2 - 1 (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
    (* After running the program in A134808 *) Select[Range[0, 2^16 - 1], cyclopsQ[#, 2] &] (* Alonso del Arte, Dec 17 2010 *)
    LinearRecurrence[{7, -14, 8}, {0, 5, 27}, 30] (* Vincenzo Librandi, Dec 08 2015 *)
  • PARI
    concat(0, Vec(x*(5-8*x)/(1-7*x+14*x^2-8*x^3) + O(x^100))) \\ Altug Alkan, Dec 08 2015
    
  • Python
    def A129868(n): return ((m:=1<Chai Wah Wu, Mar 19 2024

Formula

a(n) = 2^(2n + 1) - 2^n - 1 = 2*4^n - 2^n - 1 = (2^n - 1)(2*2^n + 1).
G.f.: x*(8*x-5)/((x-1)*(2*x-1)*(4*x-1)).
Recurrences:
a(n) = (1/2)*(7 + 8*a(n - 1) + sqrt(9 + 8*a(n - 1))), a(0) = 0;
a(n) = 6*a(n - 1) - 8*a(n - 2) - 3, a(0) = 0, a(1) = 5;
a(n) = 7*a(n - 1) - 14*a(n - 2) + 8*a(n - 3), a(0) = 0, a(1) = 5, a(2) = 27.
a(n) = A006516(n+1) - 1.