cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129891 Sum of coefficients of polynomials defined in comments lines.

Original entry on oeis.org

1, 2, 4, 9, 20, 44, 96, 209, 455, 991, 2159, 4704, 10249, 22330, 48651, 105997, 230938, 503150, 1096225, 2388372, 5203604, 11337218, 24700671, 53815949, 117250109, 255455647, 556567394, 1212606837, 2641935832, 5756049469, 12540844137
Offset: 0

Views

Author

Paul Curtz, Jun 04 2007

Keywords

Comments

At the same time that I introduced the polynomials P(n,x) defined by P(0,x)=1 and for n>0, P(n,x) = (-1)^n/(n+1) + x*Sum_{ i=0..n-1 } ( (-1)^i/(i+1) )*P(n-1-i,x) (Gazette des Mathematiciens 1992), I gave the generalization P(0,x) = u(0), P(n,x) = u(n) + x*Sum_{ i=0..n-1 } u(i)*P(n-1-i,x).
For u(n), n>=0, = 1 1 1 2 3 4 5 6 7 8 ... the array of coefficients of the polynomials P(n,x) is:
1
1 1
1 2 1
2 3 3 1
3 6 6 4 1
4 11 13 10 5 1
5 18 27 24 15 6 1
6 28 51 55 40 21 7 1
whose row sums are the present sequence.
The alternating row sums are 1 0 0 1 0 0 0 -1 ...
The antidiagonal sums are 1 1 2 4 7 13 23 41 73 ...
The first column of the inverse matrix is 1 -1 1 -2 5 -11 25 -63 ...

References

  • Paul Curtz, Gazette des Mathématiciens, 1992, no. 52, p. 44.

Crossrefs

Sums of coefficients of polynomials defined in A140530.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^3)/(1-3*x+2*x^2-x^4) )); // G. C. Greubel, Oct 24 2023
    
  • Maple
    a:= n-> (Matrix([1, 1, 0, 1]). Matrix(4, (i, j)-> if i=j-1 then 1 elif j=1 then [3, -2, 0, 1][i] else 0 fi)^n)[1, 1]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 14 2009
  • Mathematica
    u[n_ /; n < 3] = 1; u[n_] := n-1;
    p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[ u[i]*p[n-i-1][x] , {i, 0, n-1}] // Expand;
    row[n_] := CoefficientList[ p[n][x], x];
    Table[row[n] // Total, {n, 0, 30}] (* Jean-François Alcover, Oct 02 2012 *)
  • SageMath
    def A129891_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x+x^3)/(1-3*x+2*x^2-x^4) ).list()
    A129891_list(40) # G. C. Greubel, Oct 24 2023

Formula

G.f.: (1-x+x^3)/(1-3*x+2*x^2-x^4). - Alois P. Heinz, Oct 14 2009

Extensions

Edited by N. J. A. Sloane, Jul 05 2007
More terms from Alois P. Heinz, Oct 14 2009