cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A141412 Triangle c(n,k) of the denominators of coefficients [x^k] P(n,x) of the polynomials P(n,x) of A129891.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 12, 2, 1, 5, 6, 4, 1, 1, 6, 180, 8, 6, 2, 1, 7, 10, 15, 2, 6, 1, 1, 8, 560, 240, 240, 6, 4, 2, 1, 9, 1260, 15120, 20, 144, 1, 12, 1, 1, 10, 12600, 672, 945, 32, 240, 8, 3, 2, 1, 11, 1260, 8400, 1512, 3024, 48, 240, 3, 1, 1, 1, 12, 166320, 100800, 64800, 12096, 12096, 480, 360, 4, 12, 2, 1
Offset: 0

Views

Author

Paul Curtz, Aug 04 2008

Keywords

Comments

Polynomials are characteristic polynomials of a particular John Couch Adams matrix.
General term: ( (-1)^(n-j)*C(j, n)*n! ) * Integral_{0..i} (u*(u-1)*(u-2)* ... *(u-n))/(u-j)) du, with 1 <= i,j <= n (see Flajolet et al.).
Denominators are 1, 2, 12, 24, 720 = A091137.
These polynomials come from the explicit case. The less interesting implicit case has the same denominators (see P. Curtz reference).

Examples

			Triangle begins:
  1;
  2,   1;
  3,   1,  1;
  4,  12,  2,  1;
  5,   6,  4,  1,  1;
  6, 180,  8,  6,  2,  1;
  7,  10, 15,  2,  6,  1,  1;
  ...
		

References

  • Paul Curtz, Intégration .. note 12, C.C.S.A., Arcueil 1969, p. 61; ibid. pp. 62-65.
  • P. Flajolet, X. Gourdon, and B. Salvy, Sur une famille de polynômes issus de l'analyse numérique, Gazette des Mathématiciens, 1993, 55, pp. 67-78.

Crossrefs

Cf. A000254, A048594, A129891, A140749 (numerators).

Programs

  • Magma
    [Denominator(Factorial(k)*StirlingFirst(n, k)/Factorial(n)): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 24 2023
    
  • Maple
    P := proc(n,x) option remember ; if n =0 then 1; else (-1)^n/(n+1)+x*add( (-1)^i/(i+1)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end:
    A141412 := proc(n,k) p := P(n,x) ; denom(coeftayl(p,x=0,k)) ; end: seq(seq(A141412(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Aug 24 2009
  • Mathematica
    p[0]=1; p[n_]:= p[n]= (-1)^n/(n+1) +x*Sum[(-1)^k*p[n-1-k]/(k+1), {k, 0, n-1}];
    Denominator[Flatten[Table[CoefficientList[p[n], x], {n,0,11}]]][[1 ;; 72]] (* Jean-François Alcover, Jun 17 2011 *)
    Table[Denominator[(k+1)!*StirlingS1[n+1,k+1]/(n+1)!], {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, Oct 24 2023 *)
  • SageMath
    def A141412(n,k): return denominator(factorial(k+1)* stirling_number1(n+1,k+1)/factorial(n+1))
    flatten([[A141412(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023

Formula

Conjecture: T(n, k) = d(n+1, k+1), with d(n,k) = denominator(A000254(n, k)*k!/n!) where A000254 are the unsigned Stirling numbers of the 1st kind. See d(n,k) in Farhi link. - Michel Marcus, Oct 18 2018
Equals denominators of A048594(n+1, k+1)/(n+1)!. - G. C. Greubel, Oct 24 2023

Extensions

Partially edited by R. J. Mathar, Aug 24 2009

A140749 Triangle c(n,k) of the numerators of coefficients [x^k] P(n,x) of the polynomials P(n,x) of A129891.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -1, 11, -3, 1, 1, -5, 7, -2, 1, -1, 137, -15, 17, -5, 1, 1, -7, 29, -7, 25, -3, 1, -1, 363, -469, 967, -35, 23, -7, 1, 1, -761, 29531, -89, 1069, -9, 91, -4, 1, -1, 7129, -1303, 4523, -285, 3013, -105, 29, -9, 1, 1, -671, 16103, -7645, 31063, -781, 4781, -55, 12, -5, 1
Offset: 0

Views

Author

Paul Curtz, Jul 13 2008

Keywords

Comments

The polynomials P(n,x) are defined in A129891: P(0,x)=1 and
P(n,x) = (-1)^n/(n+1) + x* Sum_{i=0..n-1} (-1)^i*P(n-1-i,x)/(i+1) = Sum_{k=0..n} c(n,k)*x^k.

Examples

			The polynomials, for n =0,1,2, ..., are
  P(0, x) = 1;
  P(1, x) = -1/2 + x;
  P(2, x) = 1/3 - x + x^2;
  P(3, x) = -1/4 + 11/12*x - 3/2*x^2 + x^3;
  P(4, x) = 1/5 - 5/6*x + 7/4*x^2 - 2*x^3 + x^4;
  P(5, x) = -1/6 + 137/180*x - 15/8*x^2 + 17/6*x^3 - 5/2*x^4 + x^5;
and the coefficients are
   1;
  -1/2,   1;
   1/3,  -1,       1;
  -1/4,  11/12,   -3/2,   1;
   1/5,  -5/6,     7/4,  -2,     1;
  -1/6, 137/180, -15/8,  17/6,  -5/2,  1;
   1/7,  -7/10,   29/15, -7/2,  25/6, -3,   1;.
		

References

  • Paul Curtz, Gazette des Mathématiciens, 1992, 52, p. 44.
  • Paul Curtz, Intégration Numérique .. Note 12 du Centre de Calcul Scientifique de l'Armement, Arcueil, 1969. Now in 35170, Bruz.
  • P. Flajolet, X. Gourdon, and B. Salvy, Sur une famille de polynômes issus de l'analyse numérique, Gazette des Mathématiciens, 1993, 55, pp. 67-78.

Crossrefs

Cf. A048594, A129891, A141412 (denominators).

Programs

  • Magma
    [Numerator(Factorial(k+1)*StirlingFirst(n+1,k+1)/Factorial(n+1) ): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 24 2023
    
  • Maple
    P := proc(n,x) option remember ; if n =0 then 1; else (-1)^n/(n+1)+x*add( (-1)^i/(i+1)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end:
    A140749 := proc(n,k) p := P(n,x) ; numer(coeftayl(p,x=0,k)) ; end: seq(seq(A140749(n, k),k=0..n),n=0..13) ; # R. J. Mathar, Aug 24 2009
  • Mathematica
    p[0] = 1; p[n_] := p[n] = (-1)^n/(n+1) + x*Sum[(-1)^k*p[n-1-k] / (k+1), {k, 0, n-1}];
    Numerator[ Flatten[ Table[ CoefficientList[p[n], x], {n, 0, 11}]]][[1 ;; 69]] (* Jean-François Alcover, Jun 17 2011 *)
    Table[Numerator[(k+1)!*StirlingS1[n+1,k+1]/(n+1)!], {n,0,12}, {k,0,n} ]//Flatten (* G. C. Greubel, Oct 24 2023 *)
  • SageMath
    def A048594(n,k): return (-1)^(n-k)*numerator(factorial(k+1)* stirling_number1(n+1,k+1)/factorial(n+1))
    flatten([[A048594(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023

Formula

(n+1)*c(n,k) = (n+1-k)*c(n-1,k) - n*c(n-1, k-1). [Edgard Bavencoffe in 1992]
Equals Numerators of A048594(n+1,k+1)/(n+1)!. - Paul Curtz, Jul 17 2008

Extensions

Edited and extended by R. J. Mathar, Aug 24 2009

A140530 Triangle read by rows of coefficients of polynomials defined in comments lines.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 6, 6, 4, 1, 4, 11, 13, 10, 5, 1, 5, 18, 27, 24, 15, 6, 1, 6, 28, 51, 55, 40, 21, 7, 1
Offset: 0

Views

Author

Paul Curtz, Jun 04 2007

Keywords

Comments

At the same time that I introduced the polynomials P(n,x) defined by P(0,x)=1 and for n>0, P(n,x)=((-1)^n)/(n+1) + x*Sum_{ i=0..n-1 } [(((-1)^i)/(i+1))*P(n-1-i,x)] (Gazette des Mathematiciens 1992), I gave the generalization P(0,x)=u(0), P(n,x) = u(n) + x*Sum_{ i=0..n-1 } u(i)*P(n-1-i,x).
For u(n), n>=0, = 1 1 1 2 3 4 5 6 7 8 ... the array of coefficients of the polynomials P(n,x) is:
1
1 1
1 2 1
2 3 3 1
3 6 6 4 1
4 11 13 10 5 1
5 18 27 24 15 6 1
6 28 51 55 40 21 7 1
...
which produces the present sequence.

References

  • P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p. 44.

Crossrefs

A129891 gives the row sums.

Extensions

Edited by N. J. A. Sloane, Jul 05 2007

A140512 Limit of A140485 (1, 4, 9, 13) table signed. Denominators of a sequence whose numerators are 1's.

Original entry on oeis.org

1, -2, 3, -7, 10, -12, 15, -17, 20, -24, 27, -35
Offset: 0

Views

Author

Paul Curtz, Jul 01 2008

Keywords

Comments

With transform in A129891 or A100597 the converging sequence becomes a polynomial family whose roots are on a curve (in imaginary coordinates). See P. Flajolet, X. Gourdon, B. Salvy.

References

  • P. Flajolet, X. Gourdon, B. Salvy, Gazette des mathematiciens, 1993, 55, pp. 67-78.
Showing 1-4 of 4 results.