A072597
Expansion of 1/(exp(-x) - x) as exponential generating function.
Original entry on oeis.org
1, 2, 7, 37, 261, 2301, 24343, 300455, 4238153, 67255273, 1185860331, 23000296155, 486655768525, 11155073325917, 275364320099807, 7282929854486431, 205462851526617489, 6158705454187353297, 195465061563672788947, 6548320737474275229347, 230922973019493881984021
Offset: 0
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 261*x^4 + 2301*x^5 + 24343*x^6 + ...
- O. Ganyushkin and V Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 70.
- S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 22.
- Seiichi Manyama, Table of n, a(n) for n = 0..411
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013.
- G. Jiraskova and J. Shallit, The state complexity of star-complement-star, arXiv preprint arXiv:1203.5353 [cs.FL], 2012. - From _N. J. A. Sloane_, Sep 21 2012
-
CoefficientList[Series[1/(Exp[-x]-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (Exp[-x] - x), {x, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
a[ n_] := If[ n < 0, 0, n! Sum[ (n - k + 1)^k / k!, {k, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( 1 / (exp(-x + x * O(x^n)) - x), n))};
-
{a(n) = if( n<0, 0, n! * sum(k=0, n, (n-k+1)^k / k!))}; /* Michael Somos, Jan 21 2019 */
A152656
Triangle read by rows: denominators of polynomials from A000142: P(0,x) = 1, P(n,x) = 1/n! + x*Sum_{i=0..n-1} P(n-i-1)/i!. Numerators are A152650.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 24, 3, 2, 1, 1, 120, 3, 2, 1, 1, 1, 720, 15, 8, 3, 2, 1, 1, 5040, 45, 40, 3, 6, 1, 1, 1, 40320, 315, 80, 15, 24, 1, 2, 1, 1, 362880, 315, 560, 45, 24, 1, 6, 1, 1, 1, 3628800, 2835, 4480, 315, 144, 5, 24, 3, 2, 1, 1
Offset: 0
Contribution from _Vincenzo Librandi_, Dec 16 2012: (Start)
Triangle begins:
1,
1, 1,
2, 1, 1,
6, 1, 1, 1,
24, 3, 2, 1, 1,
120, 3, 2, 1, 1, 1,
720, 15, 8, 3, 2, 1, 1,
5040, 45, 40, 3, 6, 1, 1, 1,
40320, 315, 80, 15, 24, 1, 2, 1, 1,
362880, 315, 560, 45, 24, 1, 6, 1, 1, 1,
3628800, 2835, 4480, 315, 144, 5, 24, 3, 2, 1, 1,
...
First column: A000142; second column: A049606. (End)
-
ClearAll[u, p]; u[n_] := 1/n!; p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n-i-1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Denominator (* Jean-François Alcover, Oct 02 2012 *)
A140749
Triangle c(n,k) of the numerators of coefficients [x^k] P(n,x) of the polynomials P(n,x) of A129891.
Original entry on oeis.org
1, -1, 1, 1, -1, 1, -1, 11, -3, 1, 1, -5, 7, -2, 1, -1, 137, -15, 17, -5, 1, 1, -7, 29, -7, 25, -3, 1, -1, 363, -469, 967, -35, 23, -7, 1, 1, -761, 29531, -89, 1069, -9, 91, -4, 1, -1, 7129, -1303, 4523, -285, 3013, -105, 29, -9, 1, 1, -671, 16103, -7645, 31063, -781, 4781, -55, 12, -5, 1
Offset: 0
The polynomials, for n =0,1,2, ..., are
P(0, x) = 1;
P(1, x) = -1/2 + x;
P(2, x) = 1/3 - x + x^2;
P(3, x) = -1/4 + 11/12*x - 3/2*x^2 + x^3;
P(4, x) = 1/5 - 5/6*x + 7/4*x^2 - 2*x^3 + x^4;
P(5, x) = -1/6 + 137/180*x - 15/8*x^2 + 17/6*x^3 - 5/2*x^4 + x^5;
and the coefficients are
1;
-1/2, 1;
1/3, -1, 1;
-1/4, 11/12, -3/2, 1;
1/5, -5/6, 7/4, -2, 1;
-1/6, 137/180, -15/8, 17/6, -5/2, 1;
1/7, -7/10, 29/15, -7/2, 25/6, -3, 1;.
- Paul Curtz, Gazette des Mathématiciens, 1992, 52, p. 44.
- Paul Curtz, Intégration Numérique .. Note 12 du Centre de Calcul Scientifique de l'Armement, Arcueil, 1969. Now in 35170, Bruz.
- P. Flajolet, X. Gourdon, and B. Salvy, Sur une famille de polynômes issus de l'analyse numérique, Gazette des Mathématiciens, 1993, 55, pp. 67-78.
-
[Numerator(Factorial(k+1)*StirlingFirst(n+1,k+1)/Factorial(n+1) ): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 24 2023
-
P := proc(n,x) option remember ; if n =0 then 1; else (-1)^n/(n+1)+x*add( (-1)^i/(i+1)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end:
A140749 := proc(n,k) p := P(n,x) ; numer(coeftayl(p,x=0,k)) ; end: seq(seq(A140749(n, k),k=0..n),n=0..13) ; # R. J. Mathar, Aug 24 2009
-
p[0] = 1; p[n_] := p[n] = (-1)^n/(n+1) + x*Sum[(-1)^k*p[n-1-k] / (k+1), {k, 0, n-1}];
Numerator[ Flatten[ Table[ CoefficientList[p[n], x], {n, 0, 11}]]][[1 ;; 69]] (* Jean-François Alcover, Jun 17 2011 *)
Table[Numerator[(k+1)!*StirlingS1[n+1,k+1]/(n+1)!], {n,0,12}, {k,0,n} ]//Flatten (* G. C. Greubel, Oct 24 2023 *)
-
def A048594(n,k): return (-1)^(n-k)*numerator(factorial(k+1)* stirling_number1(n+1,k+1)/factorial(n+1))
flatten([[A048594(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023
A152650
Triangle of the numerators of coefficients c(n,k) = [x^k] P(n,x) of certain polynomials P(n,x) given below.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 9, 4, 1, 1, 2, 9, 8, 5, 1, 1, 4, 27, 32, 25, 6, 1, 1, 4, 81, 32, 125, 18, 7, 1, 1, 8, 81, 128, 625, 36, 49, 8, 1, 1, 2, 243, 256, 625, 54, 343, 32, 9, 1, 1, 4, 729, 1024, 3125, 324, 2401, 256, 81, 10, 1
Offset: 0
The triangle c(n,k) and polynomials start in row n = 0 as:
1 = 1;
1, 1 = 1 + x;
1/2, 2, 1 = 1/2 + 2*x + x^2;
1/6, 2, 3, 1, = 1/6+2*x+3*x^2+x^3
1/24, 4/3, 9/2, 4, 1, = 1/24 + 4/3*x + 9/2*x^2 + 4*x^3 + x^4;
1/120, 2/3, 9/2, 8, 5, 1, = 1/120 + 2/3*x + 9/2*x^2 + 8*x^3 + 5*x^4 + x^5;
1/720, 4/15, 27/8, 32/3, 25/2, 6, 1, = 1/720 + 4/15*x + 27/8*x^2 + 32/3*x^3 + 25/2*x^4 + 6*x^5 + x^6;
1/5040, 4/45, 81/40, 32/3, 125/6, 18, 7, 1 = 1/5040 + 4/45*x + 81/40*x^2 + 32/3*x^3 + 125/6*x^4 + 18*x^5 + 7*x^6 + x^7;
-
u := proc(i) 1/i! end:
P := proc(n,x) option remember ; if n =0 then u(0); else u(n)+x*add( u(i)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end:
A152650 := proc(n,k) p := P(n,x) ; numer(coeftayl(p,x=0,k)) ; end:
seq(seq(A152650(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Aug 24 2009
-
ClearAll[u, p]; u[n_] := 1/n!; p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n-i-1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Numerator (* Jean-François Alcover, Oct 02 2012 *)
A141904
Triangle of the numerators of coefficients c(n,k) = [x^k] P(n,x) of some polynomials P(n,x).
Original entry on oeis.org
1, -1, 1, 1, -2, 1, -1, 23, -1, 1, 1, -44, 14, -4, 1, -1, 563, -818, 22, -5, 1, 1, -3254, 141, -1436, 19, -2, 1, -1, 88069, -13063, 21757, -457, 43, -7, 1, 1, -11384, 16774564, -11368, 7474, -680, 56, -8, 1, -1, 1593269, -1057052, 35874836, -261502, 3982, -688, 212, -3, 1, 1, -15518938, 4651811
Offset: 0
The polynomials P(n,x) are for n=0 to 5:
1 = P(0,x).
-1/3+x = P(1,x).
1/5-2/3*x+x^2 = P(2,x).
-1/7+23/45*x-x^2+x^3 = P(3,x).
1/9-44/105*x+14/15*x^2-4/3*x^3+x^4 = P(4,x).
-1/11+563/1575*x-818/945*x^2+22/15*x^3-5/3*x^4+x^5 = P(5,x).
- P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p.44.
- P. Flajolet, X. Gourdon, B. Salvy, Gazette des Mathematiciens, 1993, no. 55, pp.67-78.
-
u := proc(i) (-1)^i/(2*i+1) ; end:
P := proc(n,x) option remember ; if n =0 then u(0); else u(n)+x*add( u(i)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end:
A141904 := proc(n,k) p := P(n,x) ; numer(coeftayl(p,x=0,k)) ; end: seq(seq(A141904(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Aug 24 2009
-
ClearAll[u, p]; u[n_] := (-1)^n/(2*n + 1); p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n - i - 1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[ p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Numerator (* Jean-François Alcover, Oct 02 2012 *)
A320637
Regular triangle read by rows: T(n,k) = Lcm_{m=k..n} d(n,k) where d(n,k) is the denominator of the unsigned Stirling1(n,k)*k!/n! for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 12, 12, 2, 1, 1, 60, 12, 4, 1, 1, 1, 60, 180, 8, 6, 2, 1, 1, 420, 180, 120, 6, 6, 1, 1, 1, 840, 5040, 240, 240, 6, 4, 2, 1, 1, 2520, 5040, 15120, 240, 144, 4, 12, 1, 1, 1, 2520, 25200, 30240, 15120, 288, 240, 24, 3, 2, 1
Offset: 0
Triangle begins:
1,
1, 1,
1, 2, 1,
1, 6, 1, 1,
1, 12, 12, 2, 1,
1, 60, 12, 4, 1, 1,
1, 60, 180, 8, 6, 2, 1,
1, 420, 180, 120, 6, 6, 1, 1,
...
-
d(n,k) = denominator(abs(stirling(n,k,1))*k!/n!);
T(n,k) = my(x = 1); for (m=k, n, x = lcm(x, d(m,k))); x;
Showing 1-6 of 6 results.
Comments