cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129905 Expansion of g.f.: (1-x)*(1+2*x)/((1+x)*(1-3*x+x^2)).

Original entry on oeis.org

1, 3, 6, 17, 43, 114, 297, 779, 2038, 5337, 13971, 36578, 95761, 250707, 656358, 1718369, 4498747, 11777874, 30834873, 80726747, 211345366, 553309353, 1448582691, 3792438722, 9928733473, 25993761699, 68052551622, 178163893169
Offset: 0

Views

Author

Creighton Dement, Jun 04 2007

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: tesseq[A*B] with A = + .5'i + .5'j + .5'k + 'ji' + .5e ; B = + .5i' + .5j' + .5k' + 'ij' + .5e (apart from initial term)
From Andrew Rupinski, Jan 31 2011: (Start)
Form the infinite recursive array R(i,j) as follows: R(1,j) = F(j), R(2,j) = L(j) and for i > 2, R(i,j) = R(i-1,j) + R(i-2,j) where F(j) is the j-th Fibonacci number and L(j) is the j-th Lucas number. Then for i > 0, R(i,i) = a(i-1):
1 1 2 3 5 8 13 ...
1 3 4 7 11 18 29 ...
2 4 6 10 16 26 42 ...
3 7 10 17 27 44 71 ...
5 11 16 27 43 70 113 ...
8 18 26 44 70 114 184 ...
13 29 42 71 113 184 297 ...
...
(End)

Crossrefs

Programs

  • GAP
    List([0..30], n -> (Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2); # G. C. Greubel, Jan 07 2019
  • Magma
    [(Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2: n in [0..30]]; // G. C. Greubel, Jan 07 2019
    
  • Mathematica
    CoefficientList[ Series[(1+x-2x^2)/(1-2x-2x^2+x^3), {x, 0, 27}], x] (* Or *)
    t[1, k_] := Fibonacci@ k; t[2, k_] := LucasL@ k; t[n_, k_] := t[n, k] = t[n - 1, k] + t[n - 2, k]; Table[ t[n, n], {n, 28}] (* Robert G. Wilson v *)
  • PARI
    vector(30, n, n--; (fibonacci(n-2)^2 + fibonacci(n+2)^2 + fibonacci(2*n))/2) \\ G. C. Greubel, Jan 07 2019
    
  • SageMath
    [(fibonacci(n-2)^2 + fibonacci(n+2)^2 + fibonacci(2*n))/2 for n in (0..30)] # G. C. Greubel, Jan 07 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n+2) - a(n) = A054486(n+1).
a(n) = ( (4-sqrt(5))*((1+sqrt(5))/2)^(2*n) + (4 + sqrt(5))*((1-sqrt(5))/2 )^(2*n) + 2*(-1)^n)/5.
a(n) = -2*(-1)^n/5-8*A001906(n)/5+7*A001906(n+1)/5. - R. J. Mathar, Nov 10 2009
a(n) = (Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2. - Gary Detlefs Dec 20 2010