A214292
Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n with T(n,0) = n and T(n,n) = -n.
Original entry on oeis.org
0, 1, -1, 2, 0, -2, 3, 2, -2, -3, 4, 5, 0, -5, -4, 5, 9, 5, -5, -9, -5, 6, 14, 14, 0, -14, -14, -6, 7, 20, 28, 14, -14, -28, -20, -7, 8, 27, 48, 42, 0, -42, -48, -27, -8, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44, -10
Offset: 0
The triangle begins:
0: 0
1: 1 -1
2: 2 0 -2
3: 3 2 -2 -3
4: 4 5 0 -5 -4
5: 5 9 5 -5 -9 -5
6: 6 14 14 0 -14 -14 -6
7: 7 20 28 14 -14 -28 -20 -7
8: 8 27 48 42 0 -42 -48 -27 -8
9: 9 35 75 90 42 -42 -90 -75 -35 -9
10: 10 44 110 165 132 0 -132 -165 -110 -44 -10
11: 11 54 154 275 297 132 -132 -297 -275 -154 -54 -11 .
Cf.
A007318,
A000004,
A000096,
A000108,
A000245,
A000344,
A000588,
A000589,
A000590,
A001392,
A002057,
A003517,
A003518,
A003519,
A005557,
A005586,
A005587,
A008313,
A014495,
A064059,
A064061,
A080956,
A090749,
A097808,
A112467,
A124087,
A124088,
A129936,
A259525.
-
a214292 n k = a214292_tabl !! n !! k
a214292_row n = a214292_tabl !! n
a214292_tabl = map diff $ tail a007318_tabl
where diff row = zipWith (-) (tail row) row
-
row[n_] := Table[Binomial[n, k], {k, 0, n}] // Differences;
T[n_, k_] := row[n + 1][[k + 1]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 31 2018 *)
A192174
Triangle T(n,k) of the coefficients [x^(n-k)] of the polynomial p(0,x)=-1, p(1,x)=x and p(n,x) = x*p(n-1,x) - p(n-2,x) in row n, column k.
Original entry on oeis.org
-1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, -1, 0, -1, 1, 0, -2, 0, -1, 0, 1, 0, -3, 0, 0, 0, 1, 1, 0, -4, 0, 2, 0, 2, 0, 1, 0, -5, 0, 5, 0, 2, 0, -1, 1, 0, -6, 0, 9, 0, 0, 0, -3, 0, 1, 0, -7, 0, 14, 0, -5, 0, -5, 0, 1, 1, 0, -8, 0, 20, 0, -14, 0, -5, 0, 4, 0
Offset: 0
Triangle begins
-1; # -1
1, 0; # x
1, 0, 1; # x^2+1
1, 0, 0, 0; # x^3
1, 0, -1, 0, -1; # x^4-x^2-1
1, 0, -2, 0, -1, 0;
1, 0, -3, 0, 0, 0, 1;
1, 0, -4, 0, 2, 0, 2, 0;
1, 0, -5, 0, 5, 0, 2, 0, -1;
1, 0, -6, 0, 9, 0, 0, 0, -3, 0;
1, 0, -7, 0, 14, 0, -5, 0, -5, 0, 1;
1, 0, -8, 0, 20, 0,-14, 0, -5, 0, 4, 0;
1, 0, -9, 0, 27, 0,-28, 0, 0, 0, 9, 0, -1;
-
p:= proc(n,x) option remember: if n=0 then -1 elif n=1 then x elif n>=2 then x*procname(n-1,x)-procname(n-2,x) fi: end: A192174 := proc(n,k): coeff(p(n,x),x,n-k): end: seq(seq(A192174(n,k),k=0..n), n=0..11); # Johannes W. Meijer, Aug 21 2011
A176239
Shifted signed Catalan triangle T(n,k) = (-1)^*(n+k+1)*A009766(n,k-n+1) read by rows.
Original entry on oeis.org
0, -1, 1, -1, 0, 2, 0, 1, -2, 2, 0, -5, 0, 0, 1, -3, 5, -5, 0, 14, 0, 0, 0, 1, -4, 9, -14, 14, 0, -42, 0, 0, 0, 0, 1, -5, 14, -28, 42, -42, 0, 132, 0, 0, 0, 0, 0, 1, -6, 20, -48, 90, -132, 132, 0, -429, 0, 0, 0, 0, 0, 0, 1, -7, 27, -75, 165, -297, 429, -429, 0, 1430
Offset: 0
The triangle starts in row n=0 with columns 0 <= k < 2*(n+1) as:
0,-1; (-1)^k*k A001477
1,-1,.0,.2; (-1)^(k+1)*(k+1)*(k-2)/2 A080956, A000096
0,.1,-2,.2,.0,-5; (-1)^n*k*(k+1)*(k-4)/6 A129936, A005586
0,.0,.1,-3,.5,-5,..0,.14; (-1)^k*k*(k+1)*(k-1)*(k-6)/24, A005587
0,.0,.0,.1,-4,.9,-14,.14,.0,-42; A005557, A034807
0,.0,.0,.0,.1,-5,.14,-28,42,-42,0,132;
-
A009766 := proc(n,k) if k<0 or k >n then 0; else binomial(n+k,n)*(n-k+1)/(n+1) ; end if; end proc:
A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
A176239 := proc(n,k) if k <= 2*n-1 then (-1)^(n+k+1)*A009766(n,k-n+1) elif k = 2*n then 0; elif k < 2*(n+1) then (-1)^(n+1)*A000108(n+1); else 0; end if; end proc: # R. J. Mathar, Dec 03 2010
A254749
1-gonal pyramidal numbers.
Original entry on oeis.org
1, 2, 2, 0, -5, -14, -28, -48, -75, -110, -154, -208, -273, -350, -440, -544, -663, -798, -950, -1120, -1309, -1518, -1748, -2000, -2275, -2574, -2898, -3248, -3625, -4030, -4464, -4928, -5423, -5950, -6510, -7104, -7733, -8398, -9100, -9840, -10619, -11438
Offset: 1
G.f. = x + 2*x^2 + 2*x^3 - 5*x^5 - 14*x^6 - 28*x^7 - 48*x^8 - 75*x^9 + ...
-
[(n*(4+3*n-n^2))/6: n in [1..60]]; // G. C. Greubel, Aug 03 2018
-
Table[(n*(4+3*n-n^2))/6, {n,1,60}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1, 2, 2, 0}, 60] (* G. C. Greubel, Aug 03 2018 *)
-
ppg(r, n) = (3*n^2+n^3*(r-2)-n*(r-5))/6
vector(100, n, ppg(1, n))
A212346
Sequence of coefficients of x^0 in marked mesh pattern generating function Q_{n,132}^(0,4,0,0)(x).
Original entry on oeis.org
1, 1, 2, 5, 14, 28, 48, 75, 110, 154, 208, 273, 350, 440, 544, 663, 798, 950, 1120, 1309, 1518, 1748, 2000, 2275, 2574, 2898, 3248, 3625, 4030, 4464, 4928, 5423, 5950, 6510, 7104, 7733
Offset: 0
-
QQ0[t, x] = (1 - (1-4*x*t)^(1/2)) / (2*x*t); QQ1[t, x] = 1/(1 - t*QQ0[t, x]); QQ2[t, x] = (1 + t*(QQ1[t, x] - QQ0[t, x]))/(1 - t*QQ0[t, x]); QQ3[t, x] = (1 + t*(QQ2[t, x] - QQ0[t, x] + t*(QQ1[t, x] - QQ0[t, x])))/(1 - t*QQ0[t, x]); QQ4[t, x] = (1 + t*(QQ3[t, x] - QQ0[t, x] + t*(QQ2[t, x] - QQ0[t, x]) + (2*t^2*(QQ1[t, x] - QQ0[t, x]))))/(1 - t*QQ0[t, x]); q=Simplify[Series[QQ4[t, x], {t, 0, 35}]]; CoefficientList[q /. x -> 0, t] (* Robert Price, Jun 04 2012 *)
Showing 1-5 of 5 results.
Comments