A129990 Primes p such that the smallest integer whose sum of decimal digits is p is prime.
2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 71, 79, 97, 173, 179, 257, 269, 311, 389, 691, 4957, 8423, 11801, 14621, 25621, 26951, 38993, 75743, 102031, 191671, 668869
Offset: 1
Examples
The smallest integer whose sum of digits is 17 is 89; 89 is prime, therefore 17 is in the sequence.
Programs
-
Mathematica
Select[Prime[Range[1000]],PrimeQ[FromDigits[Join[{Mod[ #,9]},Table[9,{i,1,Floor[ #/9]}]]]] &]
-
Python
from itertools import islice from sympy import isprime, nextprime def A051885(n): return ((n%9)+1)*10**(n//9)-1 # from Chai Wah Wu def agen(startp=2): p = startp while True: if isprime(A051885(p)): yield p p = nextprime(p) print(list(islice(agen(), 23))) # Michael S. Branicky, Jul 27 2022
-
Sage
sorted( filter(is_prime, sum(([9*t+k for t in oeis(seq).first_terms()] for seq,k in (('A002957',1), ('A056703',2), ('A056712',4), ('A056716',5), ('A056721',7), ('A056725',8))), [3])) ) # Max Alekseyev, Feb 05 2025
Formula
Extensions
Edited, corrected and extended by Stefan Steinerberger, Jun 23 2007
Extended by D. S. McNeil, Mar 20 2009
a(29)-a(33) from Max Alekseyev, Nov 09 2009