A129995 a(n) = (n + 1)*(n^2 + 2)*(n^3 + 3)*(n^4 + 4)/4!.
1, 5, 165, 4675, 65325, 543456, 3155425, 14146210, 52259625, 166192975, 469090061, 1201490445, 2839166005, 6268589250, 13060542825, 25881747316, 49095506065, 89615392425, 158091087925, 270522770375, 450420100221, 731644012660, 1162094343345, 1808433948150
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Crossrefs
Programs
-
Magma
[(n^1 + 1)*(n^2 + 2)*(n^3 + 3)*(n^4 + 4)/24: n in [0..30]]; // Vincenzo Librandi, Apr 25 2015
-
Maple
p:=proc(n,i) mul( n^j+j, j=1..i)/i!; end; [seq(p(n,4),n=0..30)]; seq((n+1)*(n^2+2)*(n^3+3)*(n^4+4)/factorial(4), n = 0 .. 20) # Emeric Deutsch, Aug 26 2007
-
Mathematica
Table[x = 4; Product[(n^k) + k, {k, x}]/x!, {n, 0, 23}] (* Michael De Vlieger, Apr 24 2015 *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,5,165,4675,65325,543456,3155425,14146210,52259625,166192975,469090061},30] (* Harvey P. Dale, Dec 07 2021 *)
-
PARI
vector(20,n,n--;(n+1)*(n^2+2)*(n^3+3)*(n^4+4)/4!) \\ Derek Orr, Apr 25 2015
-
PARI
A129995(n)=(n+1)*(n^2+2)*(n^3+3)*(n^4+4)/12 \\ M. F. Hasler, May 02 2015
Formula
G.f.: (1-6x+165x^2+2970x^3+22480x^4+55969x^5+51511x^6+16490x^7+1595x^8+25x^9)/(1-x)^11. - Emeric Deutsch, Aug 26 2007
G.f.: -(1 + x*(-6 + x*(165 + x*(2970 + x*(22480 + x*(55969 + x*(51511 + 5*x*(3298 + x*(319 + 5*x))))))))) / (x - 1)^11. - Peter J. C. Moses, Aug 29 2007
Comments