cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130004 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+449)^2 = y^2.

Original entry on oeis.org

0, 31, 1204, 1347, 1504, 8151, 8980, 9891, 48600, 53431, 58740, 284347, 312504, 343447, 1658380, 1822491, 2002840, 9666831, 10623340, 11674491, 56343504, 61918447, 68045004, 328395091, 360888240, 396596431, 1914027940, 2103411891, 2311534480, 11155773447
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+449, y).
Corresponding values y of solutions (x, y) are in A159589.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (451+30*sqrt(2))/449 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (507363+329222*sqrt(2))/449^2 for n mod 3 = 0.

Crossrefs

Cf. A159589, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159590 (decimal expansion of (451+30*sqrt(2))/449), A159591 (decimal expansion of (507363+329222*sqrt(2))/449^2).

Programs

  • Magma
    I:=[0, 31, 1204, 1347, 1504, 8151, 8980]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 08 2018
  • Mathematica
    LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 31, 1204, 1347, 1504, 8151, 8980}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2012 *)
  • PARI
    {forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+898*n+201601), print1(n, ",")))}
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(31+1173*x+143*x^2-29*x^3-391*x^4 -29*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, May 08 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) +898 for n > 6; a(1)=0, a(2)=31, a(3)=1204, a(4)=1347, a(5)=1504, a(6)=8151.
G.f.: x*(31+1173*x+143*x^2-29*x^3-391*x^4-29*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 449*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 17 2009