A130103 Expansion of e.g.f. e^(2x)-(1+x)*e^x+x.
0, 1, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616
Offset: 0
Examples
G.f. = x + x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3321
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 18.
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Crossrefs
Cf. A000295.
Programs
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+n od: seq(a[n], n=0..30); # Zerinvary Lajos, Feb 22 2008
-
Mathematica
Join[{0,1},LinearRecurrence[{4,-5,2},{1,4,11},40]] (* Harvey P. Dale, May 16 2014 *) a[ n_] := If[ n < 2, Boole[n == 1], 2^n - (1 + n)]; (* Michael Somos, Aug 17 2015 *)
-
PARI
{a(n) = if( n<2, n==1, 2^n - (1+n))}; /* Michael Somos, Aug 17 2015 */
Formula
G.f.: x(1-3x+5x^2-2x^3)/((1-x)^2*(1-2x)).
E.g.f.: e^(2x)-(1+x)*e^x+x.
a(n) = 2^n-n-1+C(1,n)-C(0,n).
a(n) = A130102(n+1)/2.
a(n) = Sum_{i=1..n} i*2^(n-i) - Ctibor O. Zizka, Feb 23 2008
Comments