A130154 Triangle read by rows: T(n, k) = 1 + 2*(n-k)*(k-1) (1 <= k <= n).
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 9, 7, 1, 1, 9, 13, 13, 9, 1, 1, 11, 17, 19, 17, 11, 1, 1, 13, 21, 25, 25, 21, 13, 1, 1, 15, 25, 31, 33, 31, 25, 15, 1, 1, 17, 29, 37, 41, 41, 37, 29, 17, 1, 1, 19, 33, 43, 49, 51, 49, 43, 33, 19, 1, 1, 21, 37, 49, 57, 61, 61, 57, 49, 37, 21, 1
Offset: 1
Examples
The triangle T(n, k) starts: n\k 1 2 3 4 5 6 7 8 9 10 ... 1: 1 2: 1 1 3: 1 3 1 4: 1 5 5 1 5: 1 7 9 7 1 6: 1 9 13 13 9 1 7: 1 11 17 19 17 11 1 8: 1 13 21 25 25 21 13 1 9: 1 15 25 31 33 31 25 15 1 10: 1 17 29 37 41 41 37 29 17 1 ... reformatted. - _Wolfdieter Lang_, Dec 19 2017
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Crossrefs
Programs
-
GAP
Flat(List([1..12], n-> List([1..n], k-> 1 + 2*(n-k)*(k-1) ))); # G. C. Greubel, Nov 25 2019
-
Magma
[1 + 2*(n-k)*(k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 25 2019
-
Maple
T:=proc(n,k) if k<=n then 2*(n-k)*(k-1)+1 else 0 fi end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
-
Mathematica
Flatten[Table[1+2(n-k)(k-1),{n,0,20},{k,n}]] (* Harvey P. Dale, Jul 13 2013 *)
-
PARI
T(n, k) = 1 + 2*(n-k)*(k-1) \\ Iain Fox, Dec 19 2017
-
PARI
first(n) = my(res = vector(binomial(n+1,2)), i = 1); for(r=1, n, for(k=1, r, res[i] = 1 + 2*(r-k)*(k-1); i++)); res \\ Iain Fox, Dec 19 2017
-
Sage
[[1 + 2*(n-k)*(k-1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 25 2019
Formula
T(n, k) = 1 + 2*(n-k)*(k-1) (1 <= k <= n).
G.f.: G(t,z) = t*z*(3*t*z^2 - z - t*z + 1)/((1-t*z)*(1-z))^2.
Equals = 2 * A077028 - A000012 as infinite lower triangular matrices. - Gary W. Adamson, Oct 23 2007
T(n, 1) = 1 and T(n, n) = 1 for n >= 1; T(n, k) = (T(n-1, k-1)*T(n-1, k) + 2)/T(n-2, k-1), for n > 2 and 1 < k < n. See a comment above. - Rogério Serôdio, Dec 19 2017
G.f. column k (with leading zeros): (x^k/(1-x)^2)*(1 + (2*k-3)*x), k >= 1. See the g.f. of the triangle G(t,z) above: (d/dt)^k G(t,x)/k!|{t=0}. - _Wolfdieter Lang, Dec 20 2017
Extensions
Edited by Wolfdieter Lang, Dec 19 2017
Comments