cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A017077 a(n) = 8*n + 1.

Original entry on oeis.org

1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273, 281, 289, 297, 305, 313, 321, 329, 337, 345, 353, 361, 369, 377, 385, 393, 401, 409, 417, 425, 433
Offset: 0

Views

Author

Keywords

Comments

Cf. A007519 (primes), subsequence of A047522.
a(n-1), n >= 1, gives the first column of the triangle A238475 related to the Collatz problem. - Wolfdieter Lang, Mar 12 2014
First differences of A054552. - Wesley Ivan Hurt, Jul 08 2014
An odd number is congruent to a perfect square modulo every power of 2 iff it is in this sequence. Sketch of proof: Suppose the modulus is 2^k with k at least three and note that the only odd quadratic residue (mod 8) is 1. By application of difference of squares and the fact that gcd(x-y,x+y)=2 we can show that for odd x,y, we have x^2 and y^2 congruent mod 2^k iff x is congruent to one of y, 2^(k-1)-y, 2^(k-1)+y, 2^k-y. Now when we "lift" to (mod 2^(k+1)) we see that the degeneracy between a^2 and (2^(k-1)-a)^2 "breaks" to give a^2 and a^2-2^ka+2^(2k-2). Since a is odd, the latter is congruent to a^2+2^k (mod 2^(k+1)). Hence we can form every binary number that ends with '001' by starting modulo 8 and "lifting" while adding digits as necessary. But this sequence is exactly the set of binary numbers ending in '001', so our claim is proved. - Rafay A. Ashary, Oct 23 2016
For n > 3, also the number of (not necessarily maximal) cliques in the n-antiprism graph. - Eric W. Weisstein, Nov 29 2017
Bisection of A016813. - L. Edson Jeffery, Apr 26 2022

Examples

			Illustration of initial terms:
.                                          o       o       o
.                          o     o     o     o     o     o
.              o   o   o     o   o   o         o   o   o
.      o o o     o o o         o o o             o o o
.  o   o o o   o o o o o   o o o o o o o   o o o o o o o o o
.      o o o     o o o         o o o             o o o
.              o   o   o     o   o   o         o   o   o
.                          o     o     o     o     o     o
.                                          o       o       o
--------------------------------------------------------------
.  1       9          17              25                  33
- _Bruno Berselli_, Feb 28 2014
		

Crossrefs

Cf. A002189 (subsequence), A004768, A007519, A010731 (first differences), A016813, A047522, A054552.
Column 1 of A093565. Column 5 of triangle A130154. Second leftmost column of triangle A281334.
Row 1 of the arrays A081582, A238475, A371095, and A371096.
Row 2 of A257852.
Apart from the initial term, row sums of triangle A278480.

Programs

Formula

G.f.: (1+7*x)/(1-x)^2.
a(n+1) = A004768(n). - R. J. Mathar, May 28 2008
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Mar 14 2014
E.g.f.: exp(x)*(1 + 8*x). - Stefano Spezia, May 13 2021
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = a(n-1) + 8 with a(0)=1.
a(n) = A016813(2*n). (End)

A116731 Number of permutations of length n which avoid the patterns 321, 2143, 3124; or avoid the patterns 132, 2314, 4312, etc.

Original entry on oeis.org

1, 2, 5, 12, 25, 46, 77, 120, 177, 250, 341, 452, 585, 742, 925, 1136, 1377, 1650, 1957, 2300, 2681, 3102, 3565, 4072, 4625, 5226, 5877, 6580, 7337, 8150, 9021, 9952, 10945, 12002, 13125, 14316, 15577, 16910, 18317, 19800, 21361, 23002, 24725, 26532
Offset: 1

Views

Author

Lara Pudwell, Feb 26 2006

Keywords

Comments

Row sums of triangle A130154. Also, binomial transform of [1, 1, 2, 2, 0, 0, 0, ...]. - Gary W. Adamson, Oct 23 2007
Conjecture: also counts the distinct pairs (flips, iterations) that a bubble sort program generates when sorting all permutations of 1..n. - Wouter Meeussen, Dec 13 2008
a(n) is the number of lattice points (x,y) in the closed region bounded by the parabolas y = x*(x - n) and y = x*(n - x). - Clark Kimberling, Jun 01 2013

Crossrefs

Programs

Formula

G.f.: (3*x^2 - 2*x + 1)*x/(x - 1)^4.
a(n) = (n^3 - 3*n^2 + 5*n)/3. - Franklin T. Adams-Watters, Sep 13 2006
a(n) = A006527(n-1) + 1. - Vladimir Joseph Stephan Orlovsky, May 04 2011
E.g.f.: exp(x)*(x + x^3/3). - Nikolaos Pantelidis, Feb 05 2023

Extensions

More terms from Franklin T. Adams-Watters, Sep 13 2006

A176284 Triangle T(n,k) = 1 + 3*n*k*(n-k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 19, 19, 1, 1, 37, 49, 37, 1, 1, 61, 91, 91, 61, 1, 1, 91, 145, 163, 145, 91, 1, 1, 127, 211, 253, 253, 211, 127, 1, 1, 169, 289, 361, 385, 361, 289, 169, 1, 1, 217, 379, 487, 541, 541, 487, 379, 217, 1, 1, 271, 481, 631, 721, 751, 721, 631, 481, 271, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2010

Keywords

Comments

This could be written T(n,k) = 1 - (n-k)^3 - k^3 + n^3, where squares (instead of cubes) would define A130154.
Row sums are {1, 2, 9, 40, 125, 306, 637, 1184, 2025, 3250, 4961, ...} = (n+1)^2*(n^2 -2*n +2)/2.

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   7,   1;
  1,  19,  19,   1;
  1,  37,  49,  37,   1;
  1,  61,  91,  91,  61,   1;
  1,  91, 145, 163, 145,  91,   1;
  1, 127, 211, 253, 253, 211, 127,   1;
  1, 169, 289, 361, 385, 361, 289, 169,   1;
  1, 217, 379, 487, 541, 541, 487, 379, 217,   1;
  1, 271, 481, 631, 721, 751, 721, 631, 481, 271, 1;
		

Crossrefs

Cf. A130154.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> 1 + 3*n*k*(n-k) ))); # G. C. Greubel, Nov 25 2019
  • Magma
    [1 + 3*n*k*(n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 25 2019
    
  • Maple
    seq(seq(1 + 3*n*k*(n-k), k=0..n), n=0..12); # G. C. Greubel, Nov 25 2019
  • Mathematica
    Flatten[Table[1+3n k(n-k),{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    T(n,k) = 1 + 3*n*k*(n-k); \\ G. C. Greubel, Nov 25 2019
    
  • Sage
    [[1 + 3*n*k*(n-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 25 2019
    

Formula

T(n,k) = T(n,n-k).
T(n,k) = 1 + 3*n*k*(n-k).

Extensions

Edited by R. J. Mathar, May 03 2013

A296180 Triangle read by rows: T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 13, 10, 1, 1, 13, 19, 19, 13, 1, 1, 16, 25, 28, 25, 16, 1, 1, 19, 31, 37, 37, 31, 19, 1, 1, 22, 37, 46, 49, 46, 37, 22, 1, 1, 25, 43, 55, 61, 61, 55, 43, 25, 1, 1, 28, 49, 64, 73, 76, 73, 64, 49, 28, 1
Offset: 0

Views

Author

Wolfdieter Lang, Dec 20 2017

Keywords

Comments

This is member m = 3 of the family of triangles T(m; n, k) = m*(n - k)*k + 1, for m >= 0. For m = 0: A000012(n, k) (read as a triangle); for m = 1: A077028 (rascal), for m = 2: T(2, n+1, k+1) = A130154(n, k). Motivated by A130154 to look at this family of triangles.
In general the recurrence is: T(m; n, 0) = 1 and T(m; n, n) = 1 for n >= 0; T(m; n, k) = (T(m; n-1, k-1)*T(m; n-1, k) + m)/T(m; n-2, k-1), for n >= 2, k = 1..n-1.
The general g.f. of the sequence of column k (with leading zeros) is G(m; k, x) = (x^k/(1 - x)^2)*(1 + (m*k - 1)*x), k >= 0.
The general g.f. of the triangle T(m;, n, k) is GT(m; x, t) = (1 - (1 + t)*x + (m+1)*t*x^2)/((1 - t*x)*(1 - x))^2, and G(m; k, x) = (d/dt)^k GT(m; x, t)/k!|_{t=0}.
For a simple combinatorial interpretation see the one given in A130154 by Rogério Serôdio which can be generalized to m >= 3.

Examples

			The triangle T(n, k) begins:
n\k   0  1  2  3  4  5  6  7  8  9 10 ...
0:    1
1:    1  1
2:    1  4  1
3:    1  7  7  1
4:    1 10 13 10  1
5:    1 13 19 19 13  1
6:    1 16 25 28 25 16  1
7:    1 19 31 37 37 31 19  1
8:    1 22 37 46 49 46 37 22  1
9:    1 25 43 55 61 61 55 43 25  1
10:   1 28 49 64 73 76 73 64 49 28  1
...
Recurrence: 28 = T(6, 3) = (19*19 + 3)/13 = 28.
		

Crossrefs

Columns (without leading zeros): A000012, A016777, A016921, A016921, A017173, A017533, ...

Programs

  • Mathematica
    Table[3 k (n - k) + 1, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 20 2017 *)
  • PARI
    lista(nn) = for(n=0, nn, for(k=0, n, print1(3*(n - k)*k + 1, ", "))) \\ Iain Fox, Dec 21 2017

Formula

T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n,
Recurrence: T(n, 0) = 1 and T(n, n) = 1 for n >= 0; T(n, k) = (T(n-1, k-1)*T(n-1, k) + 3)/T(n-2, k-1), for n >= 2, k = 1..n-1.
G.f. of column k (with leading zeros): (x^k/(1 - x)^2)*(1 + (3*k-1)*x), k >= 0.
G.f. of triangle: (1 - (1 + t)*x + 4*t*x^2)/((1 - t*x)*(1 - x))^2 = 1 + (1+t)*x +(1 + 4*t + t^2)*x^2 + (1 + 7*t + 7*t^2 + t^3)*x^3 = ...

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0

Views

Author

Keywords

Comments

Columns are linear recurrence sequences with signature (3,-3,1).
8*T(n,k) + A166147(k-1) are squares.
Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
Antidiagonals sums yield A116731.

Examples

			The array T(n,k) begins
1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
...
The inverse binomial transforms of the columns are
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    1    2    3    4    5    6    7    8    9   10   11   12  ...
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1   1
1   2   2
1   3   4   4
1   4   6   7   7
1   5   8  10  11  11
1   6  10  13  15  16  16
1   7  12  16  19  21  22  22
1   8  14  19  23  26  28  29  29
1   9  16  22  27  31  34  36  37  37
1  10  18  25  31  36  40  43  45  46  46
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(n, 2) + k*n + 1;
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
  • Maxima
    T(n, k) := binomial(n, 2)+ k*n + 1$
    for n:0 thru 20 do
        print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n,k) = binomial(n, 2) + k*n + 1;
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018

Formula

G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
T(n,k) = T(n-1,k) + n + k - 1.
T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
T(n,0) = A152947(n+1).
T(n,1) = A000124(n).
T(n,2) = A000217(n).
T(n,3) = A034856(n+1).
T(n,4) = A052905(n).
T(n,5) = A051936(n+4).
T(n,6) = A246172(n+1).
T(n,7) = A302537(n).
T(n,8) = A056121(n+1) + 1.
T(n,9) = A056126(n+1) + 1.
T(n,10) = A051942(n+10) + 1, n > 0.
T(n,11) = A101859(n) + 1.
T(n,12) = A132754(n+1) + 1.
T(n,13) = A132755(n+1) + 1.
T(n,14) = A132756(n+1) + 1.
T(n,15) = A132757(n+1) + 1.
T(n,16) = A132758(n+1) + 1.
T(n,17) = A212427(n+1) + 1.
T(n,18) = A212428(n+1) + 1.
T(n,n) = A143689(n) = A300192(n,2).
T(n,n+1) = A104249(n).
T(n,n+2) = T(n+1,n) = A005448(n+1).
T(n,n+3) = A000326(n+1).
T(n,n+4) = A095794(n+1).
T(n,n+5) = A133694(n+1).
T(n+2,n) = A005449(n+1).
T(n+3,n) = A115067(n+2).
T(n+4,n) = A133694(n+2).
T(2*n,n) = A054556(n+1).
T(2*n,n+1) = A054567(n+1).
T(2*n,n+2) = A033951(n).
T(2*n,n+3) = A001107(n+1).
T(2*n,n+4) = A186353(4*n+1) (conjectured).
T(2*n,n+5) = A184103(8*n+1) (conjectured).
T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
T(n,2*n) = A140066(n+1).
T(n+1,2*n) = A005891(n).
T(n+2,2*n) = A249013(5*n+4) (conjectured).
T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
T(2*n,2*n) = A143689(2*n).
T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
T(2*n+1,2*n) = A085473(n).
a(n+1,5*n+1)=A051865(n+1) + 1.
a(n,2*n+1) = A116668(n).
a(2*n+1,n) = A054569(n+1).
T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
T(n,3*n) = A140063(n+1).
T(n+1,3*n) = A069099(n+1).
T(n,4*n) = A276819(n).
T(4*n,n) = A154106(n-1), n > 0.
T(2^n,2) = A028401(n+2).
T(1,n)*T(n,1) = A006000(n).
T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
T(n*(n+1)+1,n) = A294259(n+1).
T(n,n^2+1) = A081423(n).
T(n,A000217(n)) = A158842(n), n > 0.
T(n,A152947(n+1)) = A060354(n+1).
floor(T(n,n/2)) = A267682(n) (conjectured).
floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
ceiling(T(n,n)/n) = A007494(n), n > 0.
ceiling(T(n,n^2)/n) = A171769(n), n > 0.
ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.
Showing 1-5 of 5 results.