cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A130164 Numbers k such that k^2 divides 3*Fibonacci(k).

Original entry on oeis.org

1, 12, 36, 612, 684, 3852, 11628, 25308, 41004, 65484, 73188, 77292, 155268, 156636, 250308, 430236, 467172, 545148, 562428, 779076, 977364, 1244196, 1313964, 1847484, 2123028, 2185452, 2621196, 2639556, 2662812, 2707956, 2859804, 3770892, 4387428, 4679244, 4755852, 4942116, 5744916, 5795532, 6394716, 7941924, 8053308, 8270244, 9267516
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2007

Keywords

Comments

A subset of A023172. All listed terms for n>1 are divisible by a(2) = 12 = 2^2*3. All listed terms for n>2 are divisible by a(3) = 36 = 2^2*3^2. - Robert G. Wilson v, May 15 2007

Examples

			36 is a term because 36^2 = 2^4*3^4 divides 3*Fibonacci(36) = 3*14930352 = 2^4*3^4*17*19*107.
		

Crossrefs

Cf. A000045.
Cf. A023172 (n divides Fibonacci(n)), A130163 (n^2 divides 2*Fibonacci(n)).

Programs

  • Magma
    [n: n in [1..2*10^5] | 3*Fibonacci(n) mod n^2 eq 0 ]; // Vincenzo Librandi, Sep 17 2015
  • Mathematica
    a=0; b=1; c=1; Do[ a=b; b=c; c=a+b; If[ Mod[3c,(n+2)^2 ] == 0, Print[n+2]],{n, 1, 30000}] (* Stefan Steinerberger, May 15 2007 *)
    a = 0; b = 0; c = 1; lst = {}; Do[ If[ Mod[3c, n^2] == 0, AppendTo[lst, n]]; a = b; b = c; c = a + b; {n, 2000000}]; lst (* Robert G. Wilson v *)
    A130164 = {1}; a = 0; b = 12; c = 3864; Do[If[Mod[36b, n^2] == 0, A130164 = Append[A130164, n]]; a = b; b = c; c = 322b - a;, {n, 12, 1000000, 12}]; A130164
    Length[A130164]
    (* Keith Schneider, May 27 2007 *)
  • PARI
    for(n=1,10^7,A=matrix(2,2,i,j,Mod(1,n*n)*(i+j<4))^n;if(lift(3*A[1,2])==0,print1(n",")))
    

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, May 15 2007
More terms from Robert Gerbicz, Nov 28 2010
Showing 1-1 of 1 results.