cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A130169 a(1) = 1; for n>1, a(n) = (c(n) + c(n+1))/2, where c(n) = A130168(n).

Original entry on oeis.org

1, 2, 9, 63, 621, 8127, 135729, 2810403, 70558101, 2109957687, 74061977049, 3014272078443, 140764140297981, 7474792551154047, 447790997859123969, 30053688313164013683, 2245843775591721612261, 185829940905166760571207, 16941047558158020804504489
Offset: 1

Views

Author

Don Knuth, Aug 02 2007

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := (-2^(-1))^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))* BernoulliB[n+k+1], {k, 0, n}];
    c[n_] := (b[n] + b[n+1])/3;
    a[n_] := If[n == 1, 1, (c[n] + c[n+1])/2];
    a /@ Range[1, 19] (* Jean-François Alcover, Apr 08 2021 *)

Formula

G.f.: (1+x)^2/(3*x^3)*Q(0) + (x^3 - 5*x^2 - 5*x - 2)/(6*x^3), where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 2/(1 - x*(k+1)^2/( x*(k+1)^2 - 2/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013

A000366 Genocchi numbers of second kind (A005439) divided by 2^(n-1).

Original entry on oeis.org

1, 1, 2, 7, 38, 295, 3098, 42271, 726734, 15366679, 391888514, 11860602415, 420258768950, 17233254330343, 809698074358250, 43212125903877439, 2599512037272630686, 175079893678534943287, 13122303354155987156306, 1088559958829010054171343, 99456043127935948731527942
Offset: 1

Views

Author

Keywords

Comments

The earliest known reference to these numbers is the Dellac Marseille memoir. - Don Knuth, Jul 11 2007
According to Ira Gessel, Dellac's interpretation is the following: start with a 2n X n array of cells and consider the set D of cells in rows i through i+n of column i, for i from 1 to n. Then a(n) is the number of subsets of D containing two cells in each column and one cell in each row.
Barsky proved that for even n>1, a(n) is congruent to 3 mod 4 and for odd n>1, congruent to 2 mod 4. Gessel shows that for even n>5, a(n) is congruent to 4n-1 mod 16 and for odd n>2 that a(n)/2 is congruent to 2-n mod 8.
The entry for A005439 has further information.
The number of sequences (I_1,...,I_{n-1}) consisting of subsets of the set {1,...,n} such that the number of elements in I_k is exactly k and I_k\subset I_{k+1}\cup {k+1}. The Euler characteristics of the degenerate flag varieties of type A. - Evgeny Feigin, Dec 15 2011
Kreweras proved that for n>2, a(n) is alternatively congruent to 2 and to 7 mod 36. - Michel Marcus, Nov 06 2012

Examples

			G.f. = x + x^2 + 2*x^3 + 7*x^4 + 38*x^5 + 295*x^6 + 3098*x^7 + ...
		

References

  • Anonymous, L'Intermédiaire des Mathématiciens, 7 (1900), p. 328.
  • Hippolyte Dellac, Problem 1735, L'Intermédiaire des Mathématiciens, Vol. 7 (1900), p. 9 ff.
  • E. Lemoine, L'Intermédiaire des Mathématiciens, 8 (1901), 168-169.
  • L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.

Crossrefs

First column, first diagonal and row sums of triangle A014784.
Also row sums of triangle A239894.

Programs

  • Mathematica
    a[n_] = (-2^(-1))^(n-2)* Sum[ Binomial[n, k]*(1 - 2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}]; Table[a[n], {n,19}] (* Jean-François Alcover, Jul 18 2011, after PARI prog. *)
  • PARI
    a(n)=(-1/2)^(n-2)*sum(k=0,n,binomial(n,k)*(1-2^(n+k+1))*bernfrac(n+k+1))
    
  • PARI
    {a(n)=local(CF=1+x*O(x^n));if(n<1,return(0), for(k=1,n,CF=1/(1-((n-k)\2+1)*((n-k)\2+2)/2*x*CF));return(Vec(CF)[n]))} (Hanna)
    
  • PARI
    {a(n)=polcoeff( x*sum(m=0, n, m!*(m+1)!*(x/2)^m / prod(k=1, m,1 + k*(k+1)*x/2 +x*O(x^n)) ), n)} \\ Paul D. Hanna, Feb 03 2013
    
  • Python
    from math import comb
    from sympy import bernoulli
    def A000366(n): return (-1 if n&1 else 1)*sum(comb(n,k)*(1-(1<>n-2 if n>1 else 1 # Chai Wah Wu, Apr 14 2023
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(1), ..., a(n)] for n >= 1.
    def A000366_list(n) :
        D = [0]*(n+2); D[1] = 1
        R = []; z = 1/2; b = False
        for i in(0..2*n-1) :
            h = i//2 + 1
            if b :
                for k in range(h-1, 0, -1) : D[k] += D[k+1]
                z *= 2
            else :
                for k in range(1, h+1, 1) :  D[k] += D[k-1]
            b = not b
            if not b : R.append(D[1]/z)
        return R
    A000366_list(19) # Peter Luschny, Jun 29 2012
    

Formula

From Don Knuth, Jul 11 2007: (Start)
The anonymous 1900 note in Interm. Math. gives a formula that is equivalent to a nice generating function:
For example, the first four terms on the right are
1
... 2x - 2x^2 + 2x^3 + ...
........ 9x^2 - 36x^3 + ...
............... 72x^3 + ...
summing to 1 + 2x + 7x^2 + 38x^3 + ... . Of course one can replace x with 2x and get a generating function for A005439. (End)
(-2)^(2-n) * Sum_{k=0..n} C(n, k)*(1-2^(n+k+1))*B(n+k+1), with B(n) the Bernoulli numbers.
O.g.f.: A(x) = x/(1-x/(1-x/(1-3*x/(1-3*x/(1-6*x/(1-6*x/(... -[n/2+1]*[n/2+2]/2*x/(1- ...)))))))) (continued fraction). - Paul D. Hanna, Oct 07 2005
Sum_{n>0} a(n)x^n = Sum_{n>0} (n!^2/2^{n-1}) (x^n/((1+x)(1+3x)...(1+binomial(n,2)x))).
a(n+1) = Sum_{k=0..n} A211183(n,k). - Philippe Deléham, Feb 03 2013
G.f.: Q(0)*2 - 2, where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 2/(1 - x*(k+1)^2/( x*(k+1)^2 - 2/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
a(n) ~ 2^(n+5) * n^(2*n+3/2) / (exp(2*n) * Pi^(2*n+1/2)). - Vaclav Kotesovec, Oct 28 2014

Extensions

More terms from David W. Wilson, Jan 11 2001
Edited by Ralf Stephan, Apr 17 2004

A343198 Regular triangle T(n,k) of Dellac configurations with boundaries, n>=1 and k>=0.

Original entry on oeis.org

1, 2, 3, 7, 9, 15, 38, 45, 63, 111, 295, 333, 423, 621, 1131, 3098, 3393, 4059, 5373, 8127, 15123, 42271, 45369, 52155, 64665, 87939, 135729, 256335, 726734, 769005, 859743, 1019601, 1295163, 1794825, 2810403, 5364471, 15366679, 16093413, 17631423, 20256021, 24549831, 31731453, 44583183, 70558101, 135751731
Offset: 1

Views

Author

Michel Marcus, Apr 07 2021

Keywords

Examples

			Triangle begins:
    1
    2   3
    7   9  15
   38  45  63 111
  295 333 423 621 1131
  ...
		

Crossrefs

Cf. A000366 (1st column), A130168 (right diagonal).

Formula

T(n, 0) = 2*T(n-1, 0) + Sum_{k=1..n-2} T(n-1, k).
Showing 1-3 of 3 results.