A130168
a(n) = (b(n) + b(n+1))/3, where b(n) = A000366(n).
Original entry on oeis.org
1, 3, 15, 111, 1131, 15123, 256335, 5364471, 135751731, 4084163643, 144039790455, 5884504366431, 275643776229531, 14673941326078563, 880908054392169375, 59226468571935857991, 4432461082611507366531, 367227420727722013775883, 33514867695588319595233095
Offset: 2
-
b[n_] := (-2^(-1))^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))* BernoulliB[n+k+1], {k, 0, n}];
a[n_] := (b[n] + b[n+1])/3;
a /@ Range[2, 20] (* Jean-François Alcover, Apr 08 2021 *)
-
from math import comb
from sympy import bernoulli
def A130168(n): return (abs((2-(2<>n-1)//3 # Chai Wah Wu, Apr 14 2023
A005439
Genocchi medians (or Genocchi numbers of second kind).
Original entry on oeis.org
1, 1, 2, 8, 56, 608, 9440, 198272, 5410688, 186043904, 7867739648, 401293838336, 24290513745920, 1721379917619200, 141174819474169856, 13266093250285568000, 1415974941618255921152, 170361620874699124637696, 22948071824232932086513664, 3439933090471867097102680064
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Muniru A Asiru, Table of n, a(n) for n = 0..270 (terms n = 1..100 from T. D. Noe)
- A. Ayyer, D. Hathcock, and P. Tetali, Toppleable Permutations, Excedances and Acyclic Orientations, arXiv:2010.11236 [math.CO], 2020.
- Paul Barry, Series reversion with Jacobi and Thron continued fractions, arXiv:2107.14278 [math.NT], 2021.
- Beáta Bényi, A Bijection for the Boolean Numbers of Ferrers Graphs, Graphs and Combinatorics (2022) Vol. 38, No. 10.
- Ange Bigeni, The universal sl2 weight system and the Kreweras triangle, arXiv:1712.05475 [math.CO], 2017.
- Ange Bigeni, Combinatorial interpretations of the Kreweras triangle in terms of subset tuples, arXiv:1712.01929 [math.CO], 2017.
- Ange Bigeni, A generalization of the Kreweras triangle through the universal sl_2 weight system, Journal of Combinatorial Theory, Series A (2019) Vol. 161, 309-326.
- Alin Bostan, Lucia Di Vizio, and Kilian Raschel, Singular walks in the quarter plane and Bernoulli numbers, arXiv:2504.13542 [math.CO], 2025. See p. 28.
- Alexander Burstein, Sergi Elizalde, and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006. [Theorem 3.5]
- Kwang-Wu Chen, An Interesting Lemma for Regular C-fractions, J. Integer Seqs., Vol. 6, 2003.
- Shane Chern, Parity considerations for drops in cycles on {1,2,...,n}, arXiv:2112.02074 [math.CO], 2021.
- Bishal Deb and Alan D. Sokal, Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers, arXiv:2212.07232 [math.CO], 2022. See pp. 14-15.
- Bishal Deb, Continued fractions using a Laguerre digraph interpretation of the Foata-Zeilberger bijection and its variants, arXiv:2304.14487 [math.CO], 2023. See p. 4.
- Bishal Deb, Cyclic sieving phenomena via combinatorics of continued fractions, arXiv:2508.13709 [math.CO], 2025. See p. 38.
- D. Dumont and J. Zeng, Polynômes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.
- Richard Ehrenborg and Einar Steingrímsson, Yet another triangle for the Genocchi numbers, European J. Combin. 21 (2000), no. 5, 593-600. MR1771988 (2001h:05008).
- Sen-Peng Eu, Tung-Shan Fu, Hsin-Hao Lai, and Yuan-Hsun Lo, Gamma-positivity for a Refinement of Median Genocchi Numbers, arXiv:2103.09130 [math.CO], 2021.
- Vincent Froese and Malte Renken, Terrain-like Graphs and the Median Genocchi Numbers, arXiv:2210.16281 [math.CO], 2022.
- Shishuo Fu, Zhicong Lin, and Zhi-Wei Sun, Proofs of five conjectures relating permanents to combinatorial sequences, arXiv:2109.11506 [math.CO], 2021.
- Shishuo Fu, Zhicong Lin, and Zhi-Wei Sun, Permanent identities, combinatorial sequences, and permutation statistics, Advances in Applied Mathematics, Volume 163, Part A, 102789 (2025).
- I. M. Gessel, Applications of the classical umbral calculus, arXiv:math/0108121 [math.CO], 2001.
- G. Han and J. Zeng, On a q-sequence that generalizes the median Genocchi numbers, Annal Sci. Math. Quebec, 23(1999), no. 1, 63-72.
- Gábor Hetyei, Alternation acyclic tournaments, arXiv:math/1704.07245 [math.CO], 2017.
- G. Kreweras, Sur les permutations comptées par les nombres de Genocchi de 1-ière et 2-ième espèce, Europ. J. Comb., vol. 18, pp. 49-58, 1997. (See also page 76.)
- Alexander Lazar and Michelle L. Wachs, The Homogenized Linial Arrangement and Genocchi Numbers, arXiv:1910.07651 [math.CO], 2019.
- Qiongqiong Pan and Jiang Zeng, Cycles of even-odd drop permutations and continued fractions of Genocchi numbers, arXiv:2108.03200 [math.CO], 2021.
- A. Randrianarivony and J. Zeng, Une famille de polynômes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26. In French.
- L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
- Alan Sokal, Table of n, a(n) for n = 1..10000 [315 MB file]
- Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021.
- G. Viennot, Interprétations combinatoires des nombres d'Euler et de Genocchi, Seminar on Number Theory, 1981/1982, Exp. No. 11, 94 pp., Univ. Bordeaux I, Talence, 1982.
-
List([1..20],n->2*(-1)^n*Sum([0..n],k->Binomial(n,k)*(1-2^(n+k+1))*Bernoulli(n+k+1))); # Muniru A Asiru, Nov 29 2018
-
[2*(-1)^n*(&+[Binomial(n, k)*(1-2^(n+k+1))*Bernoulli(n+k+1): k in [0..n]]): n in [1..20]]; // G. C. Greubel, Nov 28 2018
-
seq(2*(-1)^n*add(binomial(n,k)*(1 - 2^(n+k+1))*bernoulli(n+k+1), k=0..n), n=0..20); # G. C. Greubel, Oct 18 2019
-
a[n_]:= 2*(-1)^(n-2)*Sum[Binomial[n, k]*(1 -2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}]; Table[a[n], {n,16}] (* Jean-François Alcover, Jul 18 2011, after PARI prog. *)
-
a(n)=2*(-1)^n*sum(k=0,n,binomial(n,k)*(1-2^(n+k+1))* bernfrac(n+k+1))
-
a(n)=local(CF=1+x*O(x^(n+2)));if(n<0,return(0), for(k=1,n+1,CF=1/(1-((n-k+1)\2+1)^2*x*CF));return(Vec(CF)[n+2])) \\ Paul D. Hanna
-
from math import comb
from sympy import bernoulli
def A005439(n): return (-2 if n&1 else 2)*sum(comb(n,k)*(1-(1<Chai Wah Wu, Apr 14 2023
-
# Algorithm of L. Seidel (1877)
# n -> [a(1), ..., a(n)] for n >= 1.
def A005439_list(n) :
D = []; [D.append(0) for i in (0..n+2)]; D[1] = 1
R = [] ; b = True
for i in(0..2*n-1) :
h = i//2 + 1
if b :
for k in range(h-1,0,-1) : D[k] += D[k+1]
else :
for k in range(1,h+1,1) : D[k] += D[k-1]
if b : R.append(D[1])
b = not b
return R
A005439_list(18) # Peter Luschny, Apr 01 2012
-
[2*(-1)^n*sum(binomial(n,k)*(1-2^(n+k+1))*bernoulli(n+k+1) for k in (0..n)) for n in (1..20)] # G. C. Greubel, Oct 18 2019
A211183
Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1, 1, 3, 3, 6, 6, 10, 10, 15, ...) DELTA (1, 0, 2, 0, 3, 0, 4, 0, 5, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 4, 1, 0, 7, 19, 11, 1, 0, 38, 123, 107, 26, 1, 0, 295, 1076, 1195, 474, 57, 1, 0, 3098, 12350, 16198, 8668, 1836, 120, 1, 0, 42271, 180729, 268015, 176091, 52831, 6549, 247, 1, 0, 726734, 3290353, 5369639, 4105015, 1564817, 287473, 22145
Offset: 0
Triangle begins :
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 7, 19, 11, 1;
0, 38, 123, 107, 26, 1;
0, 295, 1076, 1195, 474, 57, 1;
0, 3098, 12350, 16198, 8668, 1836, 120, 1;
0, 42271, 180729, 268015, 176091, 52831, 6549, 247, 1;
0, 726734, 3290353, 5369639, 4105015, 1564817, 287473, 22145, 502, 1; ...
-
T(n,k)=polcoeff(polcoeff(sum(m=0, n, m!*x^m*prod(k=1, m, (y + (k-1)/2)/(1+(k*y+k*(k-1)/2)*x+x*O(x^n)))), n,x),k,y)
for(n=0,12,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Feb 03 2013
A014784
Triangle of numbers associated with Genocchi numbers.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 7, 12, 12, 7, 38, 69, 81, 69, 38, 295, 552, 702, 702, 552, 295, 3098, 5901, 7857, 8559, 7857, 5901, 3098, 42271, 81444, 111618, 128034, 128034, 111618, 81444, 42271, 726734, 1411197, 1971945, 2339631, 2467665, 2339631, 1971945
Offset: 0
- G. Kreweras, Sur les permutations comptées par les nombres de Genocchi de 1-ière et 2-ième espèce, Europ. J. Comb., vol. 18, pp. 49-58, 1997.
- G. Kreweras and D. Dumont, Sur les anagrammes alternés, Discrete Mathematics, Volume 211, Issues 1-3, 28 January 2000, Pages 103-110. Zbl 0944.05003.
-
a[ 1, 1 ]=1; a[ n_, k_ ] := 0 /; (k>n || k<=0); a[ n_, 1 ]=Sum[ a[ n-1, i ], {i, 1, n-1} ] a[ n_, k_ ] := a[ n, k ]=2a[ n, k-1 ]-a[ n, k-2 ]-a[ n-1, k-1 ]-a[ n-1, k-2 ]; Flatten[ Table[ a[ n, i ], {n, 1, 10}, {i, 1, n} ] ]
A218826
Number of indecomposable (by concatenation) alternating n-anagrams.
Original entry on oeis.org
1, 1, 4, 25, 217, 2470, 35647, 637129, 13843948, 360022957, 11054457253, 396003680518, 16377463914091, 774714094061221, 41572230979229284, 2512149910125036865, 169831839578092130017, 12769241823369505582150, 1062122471116082751430087, 97264621940872013476357969
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- G. Kreweras and J. Barraud, Anagrammes alternés, European Journal of Combinatorics,Volume 18, Issue 8, November 1997, Pages 887-891.
- G. Kreweras and D. Dumont, Sur les anagrammes alternés, Discrete Mathematics, Volume 211, Issues 1-3, 28 January 2000, Pages 103-110.
-
a000366(n)= {return((-1/2)^(n-2)*sum(k=0, n, binomial(n, k)*(1-2^(n+k+1))*bernfrac(n+k+1)));}
bi(n,k) = {if (matb[n,k] == 0, if (n==k, v=1, if (k==1, v = b(n),v = sum(i=1, n-k+1, b(i)*bi(n-i,k-1)););); matb[n,k] = v;); return (matb[n,k]);}
b(n) = {if (n==1, return(a000366(n+1)), return(a000366(n+1) - sum(i=2, n, bi(n,i))));}
allb(m) = {matb = matrix(m,m); for (i=1, m, print1(b(i), ", "););}
A239894
Triangle read by rows: T(n,k) (n>=1, 1 <= k <= n) = number of alternating anagrams on n letters (of length 2n) which are decomposable into at most k slices.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 25, 9, 3, 1, 217, 58, 15, 4, 1, 2470, 500, 100, 22, 5, 1, 35647, 5574, 861, 152, 30, 6, 1, 637129, 78595, 9435, 1313, 215, 39, 7, 1, 13843948, 1376162, 130159, 14192, 1870, 290, 49, 8, 1, 360022957, 29417919, 2232792, 191850, 20001, 2547, 378, 60, 9, 1
Offset: 1
Triangle begins:
1
1 1
4 2 1
25 9 3 1
217 58 15 4 1
...
-
\\ here G(n) is A000366(n).
G(n)={(-1/2)^(n-2)*sum(k=0, n, binomial(n, k)*(1-2^(n+k+1))*bernfrac(n+k+1))}
A(n)={my(M=matrix(n,n)); for(n=1, n, for(k=2, n, M[n,k] = sum(i=1, n-k+1, M[i,1]*M[n-i, k-1])); M[n,1]=G(n+1)-sum(i=2, n, M[n,i])); M}
{my(T=A(10)); for(n=1, #T, print(T[n, 1..n]))} \\ Andrew Howroyd, Feb 24 2020
A098278
D(n,0)/2^n, where D(n,x) is triangle A098277.
Original entry on oeis.org
1, 1, 3, 21, 267, 5349, 154923, 6120741, 316271787, 20701782309, 1673934058923, 163850823271461, 19093313058395307, 2611858473935397669, 414452507370456337323, 75508557963926980473381
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 267*x^4 + 5349*x^5 + ...
where A(x) = 1 + x/(1+x) + 2!^2*x^2/((1+x)*(1+3*x)) + 3!^2*x^3/((1+x)*(1+3*x)*(1+6*x)) + 4!^2*x^4/((1+x)*(1+3*x)*(1+6*x)*(1+10*x)) + ... - _Paul D. Hanna_, Sep 05 2012
-
d[0, ] = 1; d[n, x_] := d[n, x] = (x+1)(x+2)d[n-1, x+2]-x(x+1)d[n-1, x];
a[n_] := d[n, 0]/2^n;
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 26 2018 *)
-
{a(n)=polcoeff(sum(m=0, n, m!^2*x^m/prod(k=1, m, 1+k*(k+1)/2*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 05 2012
A130169
a(1) = 1; for n>1, a(n) = (c(n) + c(n+1))/2, where c(n) = A130168(n).
Original entry on oeis.org
1, 2, 9, 63, 621, 8127, 135729, 2810403, 70558101, 2109957687, 74061977049, 3014272078443, 140764140297981, 7474792551154047, 447790997859123969, 30053688313164013683, 2245843775591721612261, 185829940905166760571207, 16941047558158020804504489
Offset: 1
-
b[n_] := (-2^(-1))^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))* BernoulliB[n+k+1], {k, 0, n}];
c[n_] := (b[n] + b[n+1])/3;
a[n_] := If[n == 1, 1, (c[n] + c[n+1])/2];
a /@ Range[1, 19] (* Jean-François Alcover, Apr 08 2021 *)
A218827
Number of indecomposable (by shuffling) alternating n-anagrams.
Original entry on oeis.org
1, 1, 3, 16, 129, 1438, 20955, 384226, 8623101, 231978454, 7359117591, 271673905642, 11543742745689, 559348370431630, 30659822500574739, 1887796293833267746, 129757032076160998677, 9900820197631733600518, 834421415151529202479023, 77318409826165250051727514
Offset: 1
- G. Kreweras and J. Barraud, Anagrammes alternés, European Journal of Combinatorics,Volume 18, Issue 8, November 1997, Pages 887-891.
- G. Kreweras and D. Dumont, Sur les anagrammes alternés, Discrete Mathematics, Volume 211, Issues 1-3, 28 January 2000, Pages 103-110.
-
m = 20(*terms*); matc = Array[0&, {m, m}];
a366[n_] := (-2^(-1))^(n - 2)*Sum[Binomial[n, k]*(1 - 2^(n + k + 1))* BernoulliB[n + k + 1], {k, 0, n}];
ci[n_, k_] := ci[n, k] = Module[{v}, If[matc[[n, k]] == 0, If[n == k, v = 1, If[k == 1, v = c[n], v = Sum[Binomial[n - 1, i - 1]*c[i]*ci[n - i, k - 1], {i, 1, n - k + 1}]]]; matc[[n, k]] = v]; Return[matc[[n, k]]]];
a[n_] := a366[n + 1] - If[n == 1, 0, Sum[ci[n, i], {i, 2, n}]];
Array[a, m] (* Jean-François Alcover, Aug 03 2019, from PARI *)
-
a000366(n)= {return((-1/2)^(n-2)*sum(k=0, n, binomial(n, k)*(1-2^(n+k+1))*bernfrac(n+k+1)));}
ci(n,k) = {if (matc[n,k] == 0, if (n==k, v = 1, if (k==1, v = c(n), v = sum(i=1, n-k+1, binomial(n-1,i-1)*c(i)*ci(n-i,k-1)););); matc[n,k] = v;); return(matc[n,k]);}
c(n) = {if (n==1, return(a000366(n+1)), return(a000366(n+1) - sum(i=2, n, ci(n,i))));}
allc(m) = {matc = matrix(m,m); for (i=1, m, print1(c(i), ", "););}
A230740
O.g.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k*(k+1)/2 + x) / (1 + k*(k+1)/2*x).
Original entry on oeis.org
1, 1, 3, 10, 51, 370, 3691, 48525, 812089, 16832928, 422860609, 12649706416, 444120983433, 18078156682309, 844323149201499, 44838127594166770, 2686250544297734323, 180295858504407010026, 13473490672899749784979, 1114874245392058455432873
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 51*x^4 + 370*x^5 + 3691*x^6 +...
where
A(x) = 1 + x*(1+x)/(1+x) + x^2*(1+x)*(3+x)/((1+x)*(1+3*x)) + x^3*(1+x)*(3+x)*(6+x)/((1+x)*(1+3*x)*(1+6*x)) + x^4*(1+x)*(3+x)*(6+x)*(10+x)/((1+x)*(1+3*x)*(1+6*x)*(1+10*x)) +...
-
{a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, k*(k+1)/2+x+x*O(x^n))/prod(k=1, m, 1+k*(k+1)/2*x+x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
Showing 1-10 of 13 results.
Comments