cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A110501 Unsigned Genocchi numbers (of first kind) of even index.

Original entry on oeis.org

1, 1, 3, 17, 155, 2073, 38227, 929569, 28820619, 1109652905, 51943281731, 2905151042481, 191329672483963, 14655626154768697, 1291885088448017715, 129848163681107301953, 14761446733784164001387, 1884515541728818675112649, 268463531464165471482681379
Offset: 1

Views

Author

Michael Somos, Jul 23 2005

Keywords

Comments

The Genocchi numbers satisfy Seidel's recurrence: for n > 1, 0 = Sum_{j=0..floor(n/2)} (-1)^j*binomial(n, 2*j)*a(n-j). - Ralf Stephan, Apr 17 2004
The (n+1)-st Genocchi number is the number of Dumont permutations of the first kind on 2n letters. In a Dumont permutation of the first kind, each even integer must be followed by a smaller integer and each odd integer is either followed by a larger integer or is the last element. - Ralf Stephan, Apr 26 2004
The (n+1)-st Genocchi number is also the number of ways to place n rooks (attacking along planes; also called super rooks of power 2 by Golomb and Posner) on the three-dimensional Genocchi boards of size n. The Genocchi board of size n consists of cells of the form (i, j, k) where min{i, j} <= k and 1 <= k <= n. A rook placement on this board can also be realized as a pair of permutations of n the smallest number in the i-th position of the two permutations is not larger than i. - Feryal Alayont, Nov 03 2012
The (n+1)-st Genocchi number is also the number of Dumont permutations of the second kind, third kind, and fourth kind on 2n letters. In a Dumont permutation of the second kind, all odd positions are weak excedances and all even positions are deficiencies. In a Dumont permutation of the third kind, all descents are from an even value to an even value. In a Dumont permutation of the fourth kind, all deficiencies are even values at even positions. - Alexander Burstein, Jun 21 2019
The (n+1)-st Genocchi number is also the number of semistandard Young tableaux of skew shape (n+1,n,...,1)/(n-1,n-2,...,1) such that the entries in row i are at most i for i=1,...,n+1. - Alejandro H. Morales, Jul 26 2020
The (n+1)-st Genocchi number is also the number of positive terms of the Okounkov-Olshanski formula for the number of standard tableaux of skew shape (n+1,n,n-1,...,1)/(n-1,n-2,...,1), given by the (2n+1)-st Euler number A000111. - Alejandro H. Morales, Jul 26 2020
The (n+1)-st Genocchi number is also the number of collapsed permutations in (2n-1) letters. A permutation pi of size 2n-1 is said to be collapsed if ceil(k/2) <= pi^{-1}(k) <= n + floor(k/2). There are 3 collapsed permutations of size 3, namely 123, 132 and 213. - Arvind Ayyer, Oct 23 2020

Examples

			E.g.f.: x*tan(x/2) = x^2/2! + x^4/4! + 3*x^6/6! + 17*x^8/8! + 155*x^10/10! + ...
O.g.f.: A(x) = x + x^2 + 3*x^3 + 17*x^4 + 155*x^5 + 2073*x^6 + ...
where A(x) = x + x^2/(1+x) + 2!^2*x^3/((1+x)*(1+4*x)) + 3!^2*x^4/((1+x)*(1+4*x)*(1+9*x)) + 4!^2*x^5/((1+x)*(1+4*x)*(1+9*x)*(1+16*x)) + ... . - _Paul D. Hanna_, Jul 21 2011
From _Gary W. Adamson_, Jul 19 2011: (Start)
The first few rows of production matrix M are:
  1, 2,  0,  0,  0, 0, ...
  1, 3,  3,  0,  0, 0, ...
  1, 4,  6,  4,  0, 0, ...
  1, 5, 10, 10,  5, 0, ...
  1, 6, 15, 20, 15, 6, ... (End)
		

References

  • L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. MR0297697 (45 #6749)
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
  • Leonhard Euler, Institutionum Calculi Differentialis, volume 2 (1755), para. 181.
  • A. Genocchi, Intorno all'espressione generale de'numeri Bernulliani, Ann. Sci. Mat. Fis., 3 (1852), 395-405.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2 (1999) p. 74; see Problem 5.8.

Crossrefs

Programs

  • Magma
    [Abs(2*(4^n-1)*Bernoulli(2*n)): n in [1..20]]; // Vincenzo Librandi, Jul 28 2017
    
  • Maple
    A110501 := proc(n)
        2*(-1)^n*(1-4^n)*bernoulli(2*n) ;
    end proc:
    seq(A110501(n),n=0..10) ; # R. J. Mathar, Aug 02 2013
  • Mathematica
    a[n_] := 2*(4^n - 1) * BernoulliB[2n] // Abs; Table[a[n], {n, 19}] (* Jean-François Alcover, May 23 2013 *)
  • PARI
    {a(n) = if( n<1, 0, 2 * (-1)^n * (1 - 4^n) * bernfrac( 2*n))};
    
  • PARI
    {a(n) = if( n<1, 0, (2*n)! * polcoeff( x * tan(x/2 + x * O(x^(2*n))), 2*n))};
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!^2*x^(m+1)/prod(k=1,m, 1+k^2*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 21 2011 */
    
  • PARI
    upto(n) = my(v1, v2, v3); v1 = vector(n, i, 0); v1[1] = 1; v2 = vector(n-1, i, ((i+1)^2)\4); v3 = v1; for(i=2, n, for(j=2, i-1, v1[j] += v2[i-j+1]*v1[j-1]); v1[i] = v1[i-1]; v3[i] = v1[i]); v3 \\ Mikhail Kurkov, Aug 28 2025
    
  • Python
    from sympy import bernoulli
    def A110501(n): return ((2<<(m:=n<<1))-2)*abs(bernoulli(m)) # Chai Wah Wu, Apr 14 2023
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(1), ..., a(n)] for n >= 1.
    def A110501_list(n) :
        D = []; [D.append(0) for i in (0..n+2)]; D[1] = 1
        R = [] ; b = True
        for i in(0..2*n-1) :
            h = i//2 + 1
            if b :
                for k in range(h-1,0,-1) : D[k] += D[k+1]
            else :
                for k in range(1,h+1,1) :  D[k] += D[k-1]
            b = not b
            if b : R.append(D[h])
        return R
    A110501_list(19) # Peter Luschny, Apr 01 2012
    
  • Sage
    [2*(-1)^n*(1-4^n)*bernoulli(2*n) for n in (1..20)] # G. C. Greubel, Nov 28 2018
    

Formula

(-1)^n * a(n) = A036968(2*n) = A001469(n).
a(n) = 2*(-1)^n*(1-4^n)*B_{2*n} (B = A027641/A027642 are Bernoulli numbers).
A002105(n) = 2^(n-1)/n * a(n). - Don Knuth, Jan 16 2007
A000111(2*n-1) = a(n)*2^(2*n-2)/n. - Alejandro H. Morales, Jul 26 2020
E.g.f.: x * tan(x/2) = Sum_{k > 0} a(k) * x^(2*k) / (2*k)!.
E.g.f.: x * tan(x/2) = x^2 / (2 - x^2 / (6 - x^2 / (... 4*k+2 - x^2 / (...)))). - Michael Somos, Mar 13 2014
O.g.f.: Sum_{n >= 0} n!^2 * x^(n+1) / Product_{k = 1..n} (1 + k^2*x). - Paul D. Hanna, Jul 21 2011
a(n) = Sum_{k = 0..2*n} (-1)^(n-k+1)*Stirling2(2*n, k)*A059371(k). - Vladeta Jovovic, Feb 07 2004
O.g.f.: A(x) = x/(1-x/(1-2*x/(1-4*x/(1-6*x/(1-9*x/(1-12*x/(... -[(n+1)/2]*[(n+2)/2]*x/(1- ...)))))))) (continued fraction). - Paul D. Hanna, Jan 16 2006
a(n) = Pi^(-2*n)*integral(log(t/(1-t))^(2*n)-log(1-1/t)^(2*n) dt,t=0,1). - Gerry Martens, May 25 2011
a(n) = the upper left term of M^(n-1); M is an infinite square production matrix with M[i,j] = C(i+1,j-1), i.e., Pascal's triangle without the first two rows and right border, see the examples and Maple program. - Gary W. Adamson, Jul 19 2011
G.f.: 1/U(0) where U(k) = 1 + 2*(k^2)*x - x*((k+1)^2)*(x*(k^2)+1)/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 15 2012
a(n+1) = Sum_{k=0..n} A211183(n, k)*2^(n-k). - Philippe Deléham, Feb 03 2013
G.f.: 1 + x/(G(0)-x) where G(k) = 2*x*(k+1)^2 + 1 - x*(k+2)^2*(x*k^2+2*x*k+x+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 10 2013
G.f.: G(0) where G(k) = 1 + x*(2*k+1)^2/( 1 + x + 4*x*k + 4*x*k^2 - 4*x*(k+1)^2*(1 + x + 4*x*k + 4*x*k^2)/(4*x*(k+1)^2 + (1 + 4*x + 8*x*k + 4*x*k^2)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 11 2013
G.f.: R(0), where R(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 1/(1 - x*(k+1)*(k+2)/( x*(k+1)*(k+2) - 1/R(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 27 2013
E.g.f. (offset 1): sqrt(x)*tan(sqrt(x)/2) = Q(0)*x/2, where Q(k) = 1 - x/(x - 4*(2*k+1)*(2*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 06 2014
Pi^2/6 = 2*Sum_{k=1..N} (-1)^(k-1)/k^2 + (-1)^N/N^2(1 - 1/N + 1/N^3 - 3/N^5 + 17/N^7 - 155/N^9 +- ...), where the terms in the parenthesis are (-1)^n*a(n)/N^(2n-1). - M. F. Hasler, Mar 11 2015
a(n) = 2*n*|euler(2*n-1, 0)|. - Peter Luschny, Jun 09 2016
a(n) = 4^(1-n) * (4^n-1) * Pi^(-2*n) * (2*n)! * zeta(2*n). - Daniel Suteu, Oct 14 2016
a(n) ~ 8*Pi*(2^(2*n)-1)*(n/(Pi*exp(1)))^(2*n+1/2)*exp(1/2+(1/24)/n-(1/2880)/n^3+(1/40320)/n^5+...). [Given in A001469 by Peter Luschny, Jul 24 2013, copied May 14 2022.]
a(n) = A000182(n) * n / 4^(n-1) (Han and Liu, 2018). - Amiram Eldar, May 17 2024

Extensions

Edited by M. F. Hasler, Mar 22 2015

A000366 Genocchi numbers of second kind (A005439) divided by 2^(n-1).

Original entry on oeis.org

1, 1, 2, 7, 38, 295, 3098, 42271, 726734, 15366679, 391888514, 11860602415, 420258768950, 17233254330343, 809698074358250, 43212125903877439, 2599512037272630686, 175079893678534943287, 13122303354155987156306, 1088559958829010054171343, 99456043127935948731527942
Offset: 1

Views

Author

Keywords

Comments

The earliest known reference to these numbers is the Dellac Marseille memoir. - Don Knuth, Jul 11 2007
According to Ira Gessel, Dellac's interpretation is the following: start with a 2n X n array of cells and consider the set D of cells in rows i through i+n of column i, for i from 1 to n. Then a(n) is the number of subsets of D containing two cells in each column and one cell in each row.
Barsky proved that for even n>1, a(n) is congruent to 3 mod 4 and for odd n>1, congruent to 2 mod 4. Gessel shows that for even n>5, a(n) is congruent to 4n-1 mod 16 and for odd n>2 that a(n)/2 is congruent to 2-n mod 8.
The entry for A005439 has further information.
The number of sequences (I_1,...,I_{n-1}) consisting of subsets of the set {1,...,n} such that the number of elements in I_k is exactly k and I_k\subset I_{k+1}\cup {k+1}. The Euler characteristics of the degenerate flag varieties of type A. - Evgeny Feigin, Dec 15 2011
Kreweras proved that for n>2, a(n) is alternatively congruent to 2 and to 7 mod 36. - Michel Marcus, Nov 06 2012

Examples

			G.f. = x + x^2 + 2*x^3 + 7*x^4 + 38*x^5 + 295*x^6 + 3098*x^7 + ...
		

References

  • Anonymous, L'Intermédiaire des Mathématiciens, 7 (1900), p. 328.
  • Hippolyte Dellac, Problem 1735, L'Intermédiaire des Mathématiciens, Vol. 7 (1900), p. 9 ff.
  • E. Lemoine, L'Intermédiaire des Mathématiciens, 8 (1901), 168-169.
  • L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.

Crossrefs

First column, first diagonal and row sums of triangle A014784.
Also row sums of triangle A239894.

Programs

  • Mathematica
    a[n_] = (-2^(-1))^(n-2)* Sum[ Binomial[n, k]*(1 - 2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}]; Table[a[n], {n,19}] (* Jean-François Alcover, Jul 18 2011, after PARI prog. *)
  • PARI
    a(n)=(-1/2)^(n-2)*sum(k=0,n,binomial(n,k)*(1-2^(n+k+1))*bernfrac(n+k+1))
    
  • PARI
    {a(n)=local(CF=1+x*O(x^n));if(n<1,return(0), for(k=1,n,CF=1/(1-((n-k)\2+1)*((n-k)\2+2)/2*x*CF));return(Vec(CF)[n]))} (Hanna)
    
  • PARI
    {a(n)=polcoeff( x*sum(m=0, n, m!*(m+1)!*(x/2)^m / prod(k=1, m,1 + k*(k+1)*x/2 +x*O(x^n)) ), n)} \\ Paul D. Hanna, Feb 03 2013
    
  • Python
    from math import comb
    from sympy import bernoulli
    def A000366(n): return (-1 if n&1 else 1)*sum(comb(n,k)*(1-(1<>n-2 if n>1 else 1 # Chai Wah Wu, Apr 14 2023
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(1), ..., a(n)] for n >= 1.
    def A000366_list(n) :
        D = [0]*(n+2); D[1] = 1
        R = []; z = 1/2; b = False
        for i in(0..2*n-1) :
            h = i//2 + 1
            if b :
                for k in range(h-1, 0, -1) : D[k] += D[k+1]
                z *= 2
            else :
                for k in range(1, h+1, 1) :  D[k] += D[k-1]
            b = not b
            if not b : R.append(D[1]/z)
        return R
    A000366_list(19) # Peter Luschny, Jun 29 2012
    

Formula

From Don Knuth, Jul 11 2007: (Start)
The anonymous 1900 note in Interm. Math. gives a formula that is equivalent to a nice generating function:
For example, the first four terms on the right are
1
... 2x - 2x^2 + 2x^3 + ...
........ 9x^2 - 36x^3 + ...
............... 72x^3 + ...
summing to 1 + 2x + 7x^2 + 38x^3 + ... . Of course one can replace x with 2x and get a generating function for A005439. (End)
(-2)^(2-n) * Sum_{k=0..n} C(n, k)*(1-2^(n+k+1))*B(n+k+1), with B(n) the Bernoulli numbers.
O.g.f.: A(x) = x/(1-x/(1-x/(1-3*x/(1-3*x/(1-6*x/(1-6*x/(... -[n/2+1]*[n/2+2]/2*x/(1- ...)))))))) (continued fraction). - Paul D. Hanna, Oct 07 2005
Sum_{n>0} a(n)x^n = Sum_{n>0} (n!^2/2^{n-1}) (x^n/((1+x)(1+3x)...(1+binomial(n,2)x))).
a(n+1) = Sum_{k=0..n} A211183(n,k). - Philippe Deléham, Feb 03 2013
G.f.: Q(0)*2 - 2, where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 2/(1 - x*(k+1)^2/( x*(k+1)^2 - 2/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
a(n) ~ 2^(n+5) * n^(2*n+3/2) / (exp(2*n) * Pi^(2*n+1/2)). - Vaclav Kotesovec, Oct 28 2014

Extensions

More terms from David W. Wilson, Jan 11 2001
Edited by Ralf Stephan, Apr 17 2004

A221972 G.f.: Sum_{n>=0} n! * x^n * Product_{k=1..n} (2*k-1) / (1 + k*(2*k-1)*x).

Original entry on oeis.org

1, 1, 5, 49, 797, 19417, 661829, 30067105, 1755847661, 128153307433, 11430887275733, 1223433282301681, 154741998546660605, 22833118232808363769, 3887374029443206242917, 756359660427618330221377, 166781979021653656537782029, 41372815623877107580771950025
Offset: 0

Views

Author

Paul D. Hanna, Feb 01 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 49*x^3 + 797*x^4 + 19417*x^5 + 661829*x^6 +...
where
A(x) = 1 + x/(1+x) + 2!*1*3*x^2/((1+x)*(1+2*3*x)) + 3!*1*3*5*x^3/((1+x)*(1+2*3*x)*(1+3*5*x)) + 4!*1*3*5*7*x^4/((1+x)*(1+2*3*x)*(1+3*5*x)*(1+4*7*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, m!*x^m*prod(k=1, m, (2*k-1)/(1+k*(2*k-1)*x +x*O(x^n))) ), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = Sum_{k, 0<=k<=n} A211183(n,k)*4^(n-k). - Philippe Deléham, Feb 03 2013
G.f.: G(0) where G(k) = 1 + x*(2*k+1)*(4*k+1)/( 1 + x + 6*x*k + 8*x*k^2 - 2*x*(k+1)*(4*k+3)*(1 + x + 6*x*k + 8*x*k^2)/(2*x*(k+1)*(4*k+3) + (1 + 6*x + 14*x*k + 8*x*k^2)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 11 2013
a(n) ~ 2^(3*n+9/2) * n^(2*n+2) / (exp(2*n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, Nov 02 2014

A211194 G.f.: Sum_{n>=0} n! * (x/2)^n * Product_{k=1..n} (3*k-1) / (1 + k*(3*k-1)/2*x).

Original entry on oeis.org

1, 1, 4, 31, 394, 7441, 195544, 6822451, 305075254, 17010802021, 1157048302084, 94291964597671, 9069435785880514, 1016607721798423801, 131360503523334458224, 19382685928544981625691, 3239003918648541605116174, 608539911518928818091672781
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2013

Keywords

Comments

O.g.f. is related to pentagonal numbers A000326. If b(n) = A000326(n)*x/(1+A000326(n)x), we have A(x) = 1 +b(1) +b(1)b(2) +b(1)b(2)b(3) +b(1)b(2)b(3)b(4) + ... . Philippe Deléham, Feb 04 2013

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 49*x^3 + 797*x^4 + 19417*x^5 + 661829*x^6 +...
where
A(x) = 1 + 1*x/(1+x) + 1*5*x^2/((1+x)*(1+5*x)) + 1*5*12*x^3/((1+x)*(1+5*x)*(1+12*x)) + 1*5*12*22*x^4/((1+x)*(1+5*x)*(1+12*x)*(1+22*x)) + 1*5*12*22*35*x^5/((1+x)*(1+5*x)*(1+12*x)*(1+22*x)*(1+35*x)) + 1*5*12*22*35*51*x^6/((1+x)*(1+5*x)*(1+12*x)*(1+22*x)*(1+35*x)*(1+51*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0, n, m!*(x/2)^m*prod(k=1, m, (3*k-1)/(1+(3*k-1)/2*k*x+x*O(x^n)))), n)}
    for(n=0,21,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} A084939(n) * x^n / Product_{k=1..n} (1 + k*(3*k-1)/2*x).
a(n) = Sum_{k, 0<=k<=n} A211183(n,k)*3^(n-k). - Philippe Deléham, Feb 03 2013
Showing 1-4 of 4 results.